Advertisement

Photosynthetica

, Volume 56, Issue 4, pp 1123–1133 | Cite as

Comparative chloroplast proteome analysis of exogenously supplied trehalose to wheat seedlings under heat stress

  • Y. Luo
  • H. Y. Liu
  • Y. Z. Fan
  • W. Wang
  • Y. Y. Zhao
Original paper
  • 29 Downloads

Abstract

The aim of our study was to investigate the underlying molecular mechanisms of exogenously supplied trehalose affecting wheat photosynthesis under heat stress. The amount of ATP synthase (ATPase), oxygen-evolving enhancer protein (OEE), PsbP, Rubisco, chloroplast fructose-bisphosphate aldolase (FBPA), and ferredoxin-NADP(H) oxidoreductase (FNR) were downregulated, while PSI reaction center subunits were upregulated under heat stress. However, in the trehalose-pretreated groups, the amount of FNR, cytochrome b6f complex, PSI reaction center subunits, ATPase, FBPA, and Rubisco were upregulated under normal growth conditions and heat stress. Besides, during the recovery period, the upregulation in CAB, PsbP, OEE2, and ATPase suggested that trehalose pretreatment might help to the recovery of PSII and PSI. These results indicate that trehalose pretreatment effectively regulates the levels of the photosynthesis-related proteins and relieves the damage of heat stress to wheat chloroplast.

Additional key words

chlorophyll fluorescence chloroplast photosynthesis-related proteome PSI activity 

Abbreviations

CAB

chlorophyll a-b binding protein

CEF

cyclic electron flow

Chl

chlorophyll

Cyt b6f

cytochrome b6f complex

ETR(I)

electron transfer rate of PSI

ETR(II)

electron transfer rate of PSII

F0

minimal fluorescence yield of the dark-adapted state

Fm

maximum fluorescence

Fv/Fm

the maximum quantum yield of PSII photochemistry

FAD

flavin adenine dinucleotide

FBPA

chloroplast fructose-bisphosphate aldolase

FM

fresh mass

FNR

ferredoxin-NADP(H) oxidoreductase

IEF

isoelectric focusing

MS

mass spectrometry

OEC

oxygen-evolving complex

OEE

oxygen-evolving enhancer protein

Pm

maximal P700 signal

PsaD

PSI reaction center subunit II

PsaE

PSI reaction center subunit IV

qP

photochemical quenching coefficient

SD

standard deviation

TIL

temperature stress-induced lipocalin

Y(I)

photochemical quantum yield of PSI

Y(II)

effective photochemical quantum yield of PSII

Y(NA)

nonphotochemical PSI quantum yield of acceptor-side

Y(ND)

nonphotochemical PSI quantum yield of donor-side

Y(NO)

PSII quantum yield of nonregulated energy dissipation

Y(NPQ)

PSII quantum yield of regulated energy dissipation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahsan N., Donnart T., Nouri M.Z. et al.: Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.–J. Proteome Res. 9: 4189–4204, 2010.CrossRefPubMedGoogle Scholar
  2. Al-Naama M., Ewaze J.O., Green B.J. et al.: Trehalose accumulation in Baudoinia compniacensis following abiotic stress.–Int. Biodeter. Biodegr. 63: 765–768, 2009.CrossRefGoogle Scholar
  3. Chi W.T., Fung R.W.M., Liu H.C. et al.: Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis.–Plant Cell Environ. 32: 917–927, 2009.CrossRefPubMedGoogle Scholar
  4. El-Bashiti T., Hamamci H., Öktem H.A. et al.: Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions.–Plant Sci. 169: 47–54, 2005.CrossRefGoogle Scholar
  5. Garg A.K., Kim J.K, Owens T.G. et al.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses.–P. Natl. Acad. Sci. USA 99: 15898–15903, 2002.CrossRefGoogle Scholar
  6. Hu Z.H., Xu Y.N., Jiang G.Z. et al.: Degradation and inactivation of photosystem I complexes during linear heating.–Plant Sci. 166: 1177–1183, 2004CrossRefGoogle Scholar
  7. Ifuku K., Ido K., Sato F.: Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex.–J. Photoch. Photobio. B 104: 158–164, 2011.CrossRefGoogle Scholar
  8. Ifuku K., Ishihara S., Shimamoto R. et al.: Structure, function, and evolution of the PsbP protein family in higher plants.–Photosynth. Res. 98: 427–437, 2008.CrossRefPubMedGoogle Scholar
  9. Ifuku K., Yamamoto Y., Ono T.A. et al.: PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants.–Plant Physiol. 139: 1175–1184, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. IPCC (Intergovernmental Panel on Climate Change): Intergovernmental Panel on Climate Change Fourth Assessment Report: Climate Change 2007.–Synthesis Report. Pp. 30–31. World Meteorological Organization, Geneva 2008.Google Scholar
  11. Jin S.B.: Wheat cultivaters and their genealogy in China.–In: Jin S.B. (ed.): Wheat Cultivaters and their Genealogy in China (1st ed.). Pp. 112–115. China Agriculture Press, Beijing 1983.Google Scholar
  12. Katayama H., Nagasu T., Oda Y.: Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrixassisted laser desorption/ionization time-of-flight mass spectrometry.–Rapid Commun. Mass Sp. 15: 1416–1421, 2001.CrossRefGoogle Scholar
  13. Kramer D.M., Johnson G., Kiirats O. et al.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.–Photosynth. Res. 79: 209–218, 2004.CrossRefPubMedGoogle Scholar
  14. Laino P., Shelton D., Finnie C. et al.: Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress.–Proteomics 10: 2359–2368, 2010.CrossRefPubMedGoogle Scholar
  15. Luo Y., Li F., Wang G.P. et al.: Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heatinduced damage.–Biol. Plantarum 54: 495–501, 2010.CrossRefGoogle Scholar
  16. Luo Y., Li W.M., Wang W.: Trehalose: Protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress?–Environ. Exp. Bot. 63: 378–384, 2008.CrossRefGoogle Scholar
  17. Lyu J.I., Min S.R., Lee J.H. et al.: Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato.–Plant Cell Tiss. Org. 112: 257–262, 2013.CrossRefGoogle Scholar
  18. Majoul T., Bancel E., Triboï E. et al.: Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction.–Proteomics 4: 505–513, 2004.CrossRefPubMedGoogle Scholar
  19. Mamedov M.D., Petrova I.O., Yanykin D.V. et al.: Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes.–Biochemistry-Moscow+ 80: 61–66, 2015.CrossRefPubMedGoogle Scholar
  20. Martin W., Herrmann R.G.: Gene transfer from organelles to the nucleus: how much, what happens, and why?–Plant Physiol. 118: 9–17, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Morgan-Kiss R., Ivanov A.G., Williams J. et al.: Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga.–BBA-Biomembranes 1561: 251–265, 2002.CrossRefPubMedGoogle Scholar
  22. Pfündel E., Klughammer C., Schreiber U.: Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system.–PAM Appl. Notes 1: 21–24, 2008.Google Scholar
  23. Phee B.K., Cho J.H., Park S. et al.: Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress.–Proteomics 4: 3560–3568, 2004.CrossRefPubMedGoogle Scholar
  24. Qiang X., Paulsen A.Q., Guikema J.A. et al.: Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation.–Environ. Exp. Bot. 35: 43–54, 1995.CrossRefGoogle Scholar
  25. Richards A.B., Krakowka S., Dexter L.B. et al.: Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies.–Food Chem. Toxicol. 40: 871–898, 2002.CrossRefPubMedGoogle Scholar
  26. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview.–In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll A Fluorescence. A Signature of Photosynthesis. Pp. 279–319. Springer, Dordrecht 2004.CrossRefGoogle Scholar
  27. Silva J., Kim Y.J., Sukweenadhi J. et al.: Molecular characterization of 5-chlorophyll a/b -binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses.–Photosynthetica 54: 446–458, 2016.CrossRefGoogle Scholar
  28. Szymanska R., Dluzewska J., Slesak I. et al.: Ferredoxin:NADP+ oxidoreductase bound to cytochrome b6f complex is active in plastoquinone reduction: implications for cyclic electron transport.–Physiol. Plantarum 141: 289–298, 2011CrossRefGoogle Scholar
  29. Wahid A., Gelani S., Ashraf M. et al.: Heat tolerance in plants: An overview.–Environ. Exp. Bot. 61: 199–223, 2007.CrossRefGoogle Scholar
  30. Wang L., Liang W., Xing J. et al.: Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce.–J. Proteome Res. 12: 5124–5136, 2013.CrossRefPubMedGoogle Scholar
  31. Wang X., Cai J., Jiang D. et al.: Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by postanthesis heat stress in wheat.–J. Plant Physiol. 168: 585–593, 2011.CrossRefPubMedGoogle Scholar
  32. Wang Z.Y., Freire E., McCarty R.E.: Influence of nucleotide binding site occupancy on the thermal stability of the F1 portion of the chloroplast ATP synthase.–J. Biol. Chem. 268: 20785–20790, 1993.PubMedGoogle Scholar
  33. Wingler A., Paul M.: The role of trehalose metabolism in chloroplast development and leaf senescence.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration. Pp. 551–565. Springer, New York 2013.CrossRefGoogle Scholar
  34. Zhang H., Whitelegge J.P., Cramer W.A.: Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex.–J. Biol. Chem. 276: 38159–38165, 2001.PubMedGoogle Scholar
  35. Zhang L., Liu J.: Effects of heat stress on photosynthetic electron transport in a marine cyanobacterium Arthrospira sp.–J. Appl. Phycol. 28: 757–763, 2016.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • Y. Luo
    • 1
  • H. Y. Liu
    • 1
  • Y. Z. Fan
    • 1
  • W. Wang
    • 1
  • Y. Y. Zhao
    • 1
  1. 1.Instruments Sharing Platform of School of Life SciencesEast China Normal UniversityShanghaiChina

Personalised recommendations