, Volume 56, Issue 4, pp 1218–1223 | Cite as

Combined stresses of light and chilling on photosynthesis of Fraxinus mandschurica seedlings in northeastern China

  • X. F. Li
  • L. Jin
  • C. Y. Zhu
  • Y. J. Wen
  • Y. Wang
Brief Communication


The chilling and light stresses were experimentally created to explore photosynthesis of Fraxinus mandshurica seedlings in northeast China. Net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly with the decline of temperature and light. Significant interaction effects of light and chilling were observed on gas exchange of photosynthesis. The minimal fluorescence yield of the dark-adapted state (F0) increased with increasing light and decreasing temperature. Both high and low light stresses induced the decreases of the maximal quantum yield of PSII photochemistry (Fv/Fm), photochemical quenching coefficient (qP), nonphotochemical quenching (NPQ), and electron transport rate. Decline of Fv/Fm and increased F0 were observed under decreasing temperatures. Decreased NPQ and qP at frost temperature suggest that F. mandschurica failed to dissipate excess light energy. No interactive effects of chilling and light on chlorophyll fluorescence parameters suggests that F. mandschurica seedlings might be adapted to combined stresses of light and chilling.

Additional key words

chlorophyll fluorescence early-spring chilling net photosynthetic rate temperate zone 





intercellular CO2 concentration


transpiration rate


electron transport rate


minimal fluorescence yield of the dark-adapted state


maximal fluorescence yield of the dark-adapted state


stable fluorescence


maximum fluorescence in the light-adapted state


initial fluorescence in the light-adapted state


maximal quantum yield of PSII photochemistry


stomatal conductance


nonphotochemical quenching


net photosynthetic rates


photochemical quenching coefficient


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali M.B., Hahn E.J., Paek K.Y.: Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet.–Environ. Exp. Bot. 54: 109–120, 2005.CrossRefGoogle Scholar
  2. Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants.–Trends Plant Sci. 6: 36–42, 2001.CrossRefPubMedGoogle Scholar
  3. Bailey S., Walters R.G., Jansson S. et al.: Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses.–Planta 213: 794–801, 2001.CrossRefPubMedGoogle Scholar
  4. Baker N.K., Bowyer J.R.: Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Pp. 471. Bios Sci. Publ., Oxford 1994.Google Scholar
  5. Bekele W.A., Fiedler K., Shiringani A. et al.: Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions.–Plant Cell Environ. 37: 707–723, 2014.CrossRefPubMedGoogle Scholar
  6. Briantais J.M., Dacosta J., Goulas Y. et al.: Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0: a time-resolved analysis.–Photosynth. Res. 48: 189–196, 1996.CrossRefPubMedGoogle Scholar
  7. Dong C., Fu Y.M., Liu G.H. et al.: Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.). at different growth stages in BLSS.–Adv. Space Res. 53: 1557–1566, 2014CrossRefGoogle Scholar
  8. Fukuda N., Fujita M., Ohta Y. et al.: Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition.–Sci. Hortic.-Amsterdam 115: 176–182, 2008.CrossRefGoogle Scholar
  9. Guo L.P., Kang H.J., Ouyang Z. et al.: Photosynthetic parameter estimations by considering interactive effects of light, temperature and CO2 concentration.–Int. J. Plant Prod 9: 321–346, 2015.Google Scholar
  10. Guo Y.H., Yuan C., Tang L. et al.: Responses of clonal growth and photosynthesis in Amomum villosum, to different light environments.–Photosynthetica 54: 396–404, 2016.CrossRefGoogle Scholar
  11. Hetherington S.E., He J., Smillie R.M.: Photoinhibition at low temperature in chilling-sensitive and -resistant plants.–Plant Physiol. 90: 1609–1615, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hou W., Sun A.H., Chen H.L. et al.: Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings.–Biol. Plantarum 60: 148–154, 2016.CrossRefGoogle Scholar
  13. Hu W.H., Wu Y., Zeng J.Z. et al.: Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery.–Photosynthetica 48: 537–544, 2010.CrossRefGoogle Scholar
  14. Hu W.H., Yan X.H., Yu J.Q.: Importance of the mitochondrial alternative oxidase (AOX) pathway in alleviating photoinhibition in cucumber leaves under chilling injury and subsequent recovery when leaves are subjected to high light intensity.–J. Hortic. Sci. Biotech. 92: 31–38, 2017.CrossRefGoogle Scholar
  15. Huang W., Yang S.J., Zhang S.B. et al.: Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress.–Planta 235: 819–828, 2012.CrossRefPubMedGoogle Scholar
  16. Huang W., Zhang S.B., Cao K.F.: Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature.–Plant Cell Physiol. 52: 297–305, 2011.CrossRefPubMedGoogle Scholar
  17. Huang W., Zhang S.B., Cao K.F.: The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species.–Photosynth. Res. 103: 175–182, 2010.CrossRefPubMedGoogle Scholar
  18. Kong D.M., Preece J.E., Shen H.L.: Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.).–Plant Cell Tiss. Org. 108: 485–492, 2012.CrossRefGoogle Scholar
  19. Krause G.H., Virgo A., Winter K.: High susceptibility to photoinhibition of young leaves of tropical forest trees.–Planta 197: 583–591, 1995.CrossRefGoogle Scholar
  20. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics.–Annu. Rev. Plant Biol. 42: 313–349, 1991.CrossRefGoogle Scholar
  21. Krumova S.B., Laptenok S.P., Kovács L. et al.: Digalactosyldiacylglycerol-deficiency lowers the thermal stability of thylakoid membranes.–Photosynth. Res. 105: 229–242, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kudoh H., Sonoike K.: Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature.–Planta 215: 541–548, 2002.CrossRefPubMedGoogle Scholar
  23. Lamontagne M., Bigras F.J., Margolis A.: Chlorophyll fluorescence and CO2 assimilation of black spruce seedlings following frost in different temperature and light conditions.–Tree Physiol. 20: 249–255, 2000.CrossRefPubMedGoogle Scholar
  24. Li L., Li X.Y., Zeng F.J. et al.: Chlorophyll a, fluorescence of typical desert plant Alhagi sparsifolia, Shap. At two light levels.–Photosynthetica 54: 351–358, 2016.CrossRefGoogle Scholar
  25. Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce.–Environ. Exp. Bot. 67: 59–64, 2009.CrossRefGoogle Scholar
  26. Lukatkin A.S., Brazaityte A., Bobinas C. et al.: Chilling injury in chilling-sensitive plants: a review.–Agriculture 99: 111–124, 2012.Google Scholar
  27. Macedo A.F., Leal-Costa M.V., Tavares E.S. et al.: The effect of light quality on leaf production and development of in vitrocultured plants of Alternanthera brasiliana Kuntze.–Environ. Exp. Bot. 70: 43–50, 2011.CrossRefGoogle Scholar
  28. Mathur S., Jajoo A., Mehta P. et al.: Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).–Plant Biol. 13: 1–6, 2011.CrossRefPubMedGoogle Scholar
  29. Ort D.R., Baker N.R.: A photoprotective role for O2 as an alternative electron sink in photosynthesis?–Curr. Opin. Plant Biol. 5: 193–198, 2002.CrossRefPubMedGoogle Scholar
  30. Pettigrew W.T.: Cultivar variation in cotton photosynthetic performance under different temperature regimes.–Photosynthetica 54: 502–507, 2016.CrossRefGoogle Scholar
  31. Rahman A.: Auxin: a regulator of cold stress response.–Physiol. Plantarum 147: 28–35, 2013.CrossRefGoogle Scholar
  32. Riikonen J., Kettunen N., Gritsevich M. et al.: Growth and development of norway spruce and scots pine seedlings under different light spectra.–Environ Exp Bot. 102: 112–120, 2015.Google Scholar
  33. Sonoike K.: Photoinhibition of photosystem I.–Physiol. Plantarum 142: 56–64, 2011.CrossRefGoogle Scholar
  34. Sonoike K.: The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II.–J. Photoch. Photobio. B. 48: 136–141, 1999.CrossRefGoogle Scholar
  35. Štroch M., Vrábl D., Podolinská J. et al.: Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature.–J. Plant Physiol. 167: 597–605, 2010.CrossRefPubMedGoogle Scholar
  36. Tovuu A., Zulfugarov I.S., Lee C.H.: Correlations between the temperature dependence of chlorophyll fluorescence and the fluidity of thylakoid membranes.–Physiol. Plantarum 147: 409–416, 2013.CrossRefGoogle Scholar
  37. Weng J.H., Wong S.L., Lin R.J. et al.: Quantitative effects of temperature and light intensity on PSII efficiency of mango leaves under artificial and natural conditions.–J. Forest Res. 18: 371–378, 2013.CrossRefGoogle Scholar
  38. Wingler A.: Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature.–Front. Plant Sci. 5: 794, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yamori W., Noguchi K., Kashino Y. et al.: The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures.–Plant Cell Physiol. 49: 583–591, 2008.CrossRefPubMedGoogle Scholar
  40. Yang N., Wang C.L, He W.P. et al.: Photosynthetic characteristics and effects of exogenous glycine of Chorispora bungeana, under drought stress.–Photosynthetica 54: 459–467, 2016a.CrossRefGoogle Scholar
  41. Yang Z.Q., Yuan C.H., Han W. et al.: Effects of low irradiation on photosynthesis and antioxidant enzyme activities in cucumber during ripening stage.–Photosynthetica 54: 251–258, 2016b.CrossRefGoogle Scholar
  42. Yoshida K., Terashima I., Noguchi K.: Up regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light.–Plant Cell Physiol. 48: 606–614, 2007.CrossRefPubMedGoogle Scholar
  43. Zhu J., Tan H., Li F. et al.: Microclimate regimes following gap formation in a montane secondary forest of eastern Liaoning Province, China.–J. Forest Res. 18: 167–173, 2007.CrossRefGoogle Scholar
  44. Zinn K.E., Tunc-Ozdemir M., Harper J.F.: Temperature stress and plant sexual reproduction: uncovering the weakest links.–J. Exp. Bot. 61: 1959–1968, 2010.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • X. F. Li
    • 1
    • 2
  • L. Jin
    • 1
  • C. Y. Zhu
    • 1
  • Y. J. Wen
    • 1
  • Y. Wang
    • 1
  1. 1.Agronomy CollegeShenyang Agricultural UniversityShenyangChina
  2. 2.Qingyuan Forest CERNChinese Academy of SciencesShenyangChina

Personalised recommendations