, Volume 56, Issue 4, pp 1140–1146 | Cite as

Physio-anatomical responses of tobacco under caffeine stress

  • R. Alkhatib
  • B. Alkhatib
  • L. Al-Eitan
  • N. Abdo
  • M. Tadros
  • E. Bsoul
Original paper


Caffeine, a purine alkaloid, is reported to act both as an inducer or inhibitor to plant growth in various species. The aim of this study was to examine the effect of exogenous caffeine on tobacco (Nicotiana tabacum) plants, a plant that does not naturally synthesise caffeine. A hydroponic experiment was carried out in a growth chamber for 14 d using Hoagland’s solution supplemented with 0 (control), 25, 50, 100, 1,000; and 5,000 μM caffeine. None of the investigated caffeine concentrations significantly decreased the net photosynthetic rate except the highest concentrations of 1,000 and 5,000 μM. Light microscopy of thick-sectioned roots showed that 1,000 μM and 5,000 μM caffeine-treated plants possessed deformed epidermal cells, reduced number of cortical cells, and deformed vascular tissues with cells exhibiting thickened xylem walls as compared with control plants. Moreover, transmission electron micrographs of roots revealed that mitochondria and the plasma membrane were affected.

Additional key words

chloroplast photosynthetic rate stomatal conductance transmission microscope transpiration rate xylem 



transpiration rate


stomatal conductance


net photosynthetic rate


transmission electron microscope


standard errors for the means


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkhatib R., Alkhatib B., AL-Quraan N. et al.: Impact of exogenous caffeine on morphological, biochemical, and ultrastructural characteristics in Nicotiana tabacum var. Turkish.–Biol. Plantarum 60: 706–714, 2016.CrossRefGoogle Scholar
  2. Alkhatib R., Bsoul E., Blom D.A. et al.: Microscopic analysis of lead accumulation in tobacco (Nicotiana tabacum var. Turkish) roots and leaves.–J. Microsc. Ultrastruct. 1: 57–62, 2013.CrossRefGoogle Scholar
  3. Anaya A., Waller G.R., Okinda-Owuor P. et al.: The Role of Caffeine in the production decline due to autotoxicity in coffee and tea plantations.–In: Reigosa M., Pedrol N. (ed.): Allelopathy: from Molecules to Ecosystems. Pp. 71–91. Science Publishers Inc., Enfield 2002.Google Scholar
  4. Ashihara H., Crozier A.: Biosynthesis and catabolism of caffeine in low-caffeine-containing species of Coffea.–J. Agric. Food Chem. 47: 3425–3431, 1999.CrossRefPubMedGoogle Scholar
  5. Ashihara H., Crozier A.: Caffeine: a well known but little mentioned compound in plant science.–Trends Plant Sci. 6: 407–413, 2001.CrossRefPubMedGoogle Scholar
  6. Ashihara H., Sano H., Crozier A.: Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering.–Phytochemistry 69: 841–856, 2008.CrossRefPubMedGoogle Scholar
  7. Ciamporová M.: The development of structural changes in epidermal ceils of maize roots during water stress.–Biol. Plantarum 29: 290–294, 1987.CrossRefGoogle Scholar
  8. Ciamporová M., Mistrík I.: The Impact of the environment on roots and root systems the ultrastructural response of root cells to stressful conditions.–Environ. Exp. Bot. 33: 11–26, 1993.CrossRefGoogle Scholar
  9. Coetzee J., van der Merwe C.F.: Some characteristics of the buffer vehicle in glutaraldehyde-based fixatives.–J. Microsc. 146: 143–155, 1987.CrossRefGoogle Scholar
  10. Curlango-Rivera G., Duclos V.D., Ebolo J.J., Hawes C.M.: Transient exposure of root tips to primary and secondary metabolites: Impact on root growth and production of border cells.–Plant Soil 332: 267–275, 2010.CrossRefGoogle Scholar
  11. Dhanapackiam S., Iiyas M.H.: Effect of salinity on chlorophyll and carbohydrate contents of Sesbania grandiflora seedlings.–Indian J. Sci. Technol. 3: 64–66, 2010.Google Scholar
  12. Epstein M.A., Holt S.J.: The localization by electron microscopy of hela cell surface enzymes splitting adenosine triphosphate.–J. Cell. Biol. 19: 325–336, 1963.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferreira J.S., Duke S.O., Vaughn K.C.: Histochemical and immunocytochemical localization of tropane alkaloids in Erythroxylum coca var. coca and E. novogranatense var. novogranatense.–Int. J. Plant Sci. 159: 492–503, 1998.CrossRefGoogle Scholar
  14. Gilbert G.A., Wilson C., Madore M.A.: Root-zone salinity alters raffinose oligosaccharide metabolism and transport in coleus.–Plant Physiol. 115: 1267–1276, 1997.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hadacek F., Kraus G.F.: Plant root carbohydrates affect growth behaviour of endophytic microfungi.–FEMS Microbiol. Ecol. 41: 161–170, 2002.CrossRefPubMedGoogle Scholar
  16. Hajibagheri M.A., Yeo A.R., Flowers T.J.: Salt tolerance in Suaeda maritima (L.) Dum. Fine structure and ion concentrations in the apical regions of roots.–New Phytol. 99: 331–343, 1985.CrossRefGoogle Scholar
  17. Hajibagheri M.A., Harvey D.M., Flowers T.J.: Quantitative ion distribution withir/root cells of salt-sensitive and salt-tolerant maize varieties.–New Phytol. 105: 367–379, 1987.CrossRefGoogle Scholar
  18. Hollingsworth R.G., Armstrong J.W., Campbell E.: Caffeine as a repellent for slugs and snails.–Nature 417: 915–916, 2002.CrossRefPubMedGoogle Scholar
  19. Khanam N., Khoo C., Close R., Khan A.G.: Organogenesis, differentiation and histolocalization of alkaloids in cultured tissues and organs of Duboisia myoporoides R. Br.–Ann. Bot.-London 86: 745–752, 2000.CrossRefGoogle Scholar
  20. Kim Y.S., Uefuji H., Ogita S., Sano H.: Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control.–Transgenic Res. 15: 667–672, 2006.CrossRefPubMedGoogle Scholar
  21. Krapp A., Stitt M.: An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady state transcript levels after coldgirdling source leaves.–Planta 195: 313–323, 1995.CrossRefGoogle Scholar
  22. Kumar G., Tripathi A.: Mutagenic response of caffeine in Capsicum annuum.–J. Indian Bot. Soc. 83: 136–140, 2004.Google Scholar
  23. Mathavan S., Premalatha Y., Christopher M.M.: Effects of caffeine and theophylline on the fecundity of four lepidopteran species.–Exp. Biol. 44: 133–138, 1985.PubMedGoogle Scholar
  24. Mohanpuria P., Yadav S.K.: Retardation in seedling growth and induction of early senescence in plants upon caffeine exposure is related to its negative effect on Rubisco.–Photosynthetica 47: 293–297, 2009.CrossRefGoogle Scholar
  25. Mondolot L.P., Fisca L.A., Buatois B. et al.: Evolution in caffeoylquinic acid content and histolocalization during Coffea canephora leaf development.–Ann. Bot.-London 98: 33–40, 2006.CrossRefGoogle Scholar
  26. Montes O., Diánez F., Camacho F.: Doses of caffeine on the development and performance of pepper crops under greenhouse.–Hortic. Bras. 32: 398–403, 2014.CrossRefGoogle Scholar
  27. Nishizawa N.K., Tainaka H., Okubo A. et al.: Desiccationinduced heterophagy in plant root cells.–In: Krebs K.H., Richter H., Hinckley T.M (ed.): Structural and Functional Responses to Environmental Stresses: Water Shortage. Pp. 99–111. SPB Acad. Publ., The Hague 1989.Google Scholar
  28. Pietrini F., Iannelli M.A., Pasqualini S., Massacci A.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel.–Plant Physiol. 133: 829–837, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Reynolds E.S.: The use of lead citrate at high pH as an electronopaque stain in electron microscopy.–J. Cell Biol. 17: 208–212, 1963.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy.–J. Ultrastruct Res. 26: 31–43, 1969.CrossRefPubMedGoogle Scholar
  31. Sun A.Z., Guo F.Q.: Chloroplast retrograde regulation of heat stress responses in plants.–Front. Plant Sci. 7: 398, 2016.PubMedPubMedCentralGoogle Scholar
  32. Vartapetian B.B., Andreeva I.N., Generozova I.P. et al.: Functional electron microscopy in studies of plant response and adaptation to anaerobic stress.–Ann. Bot.-London 91: 155–172, 2003.CrossRefGoogle Scholar
  33. Vinocur B., Altman A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.–Curr. Opin. Biotechnol. 16: 123–132, 2005.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • R. Alkhatib
    • 1
  • B. Alkhatib
    • 2
  • L. Al-Eitan
    • 2
  • N. Abdo
    • 3
  • M. Tadros
    • 4
  • E. Bsoul
    • 5
  1. 1.Department of Biotechnology and Genetic Engineering, Faculty of Science and ArtsJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Applied Biological Sciences, Faculty of Science and ArtsJordan University of Science and TechnologyIrbidJordan
  3. 3.Department of Public Health, Faculty of MedicineJordan University of Science and TechnologyIrbidJordan
  4. 4.Department of Natural Resources and Environment, College of AgricultureJordan University of Science and TechnologyIrbidJordan
  5. 5.Department of Biology and BiotechnologyThe Hashemite UniversityZarqaJordan

Personalised recommendations