, Volume 56, Issue 1, pp 468–477 | Cite as

Adaptation strategies of two leaf cohorts of Prosopis juliflora produced in spring and monsoon

  • P. A. Shirke
  • U. V. Pathre
  • P. V. Sane


Prosopis juliflora is an invasive leguminous tree species growing profusely under wide environmental conditions. Primary objective of this study was to investigate adaptation strategies evolved to deal with wide environmental conditions during different seasons. P. juliflora adapts through a production of leaves in two seasons, namely, the spring (the first cohort) and monsoon (the second cohort) with differing but optimal physiological characteristics for growth in respective seasons. Our studies show that the first cohort of leaves exhibit maximum carbon fixation under moderate temperatures and a wide range of PPFD. However, these leaves are sensitive to high leaf-to-air-vapor pressure deficit (VPD) occurring at high temperatures in summer resulting in senescence. While the second cohort of leaves produced during monsoon showed maximum carbon fixation at high irradiance and temperatures with low VPD, it is sensitive to low temperatures causing senescence in winter.

Additional key words

carbon assimilation carboxylation efficiency dark respiration rate quantum efficiency tree photosynthesis water-use efficiency 



carboxylation efficiency




substomatal CO2 concentration




stomatal conductance to H2O


net photosynthetic rate


light-compensation point


light-saturation point


maximum photosynthetic rate


apparent quantum efficiency


rate of mitochondrial respiration in darkness


leaf-to-air-vapor pressure deficit


water-use efficiency


CO2-compensation point


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amthor J.S.: Respiration in a future, higher-CO2 world.–Plant Cell Environ. 14: 13–20, 1991.CrossRefGoogle Scholar
  2. Atkin O.K., Evans J.R., Ball M.C. et al.: Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance.–Plant Physiol. 122: 915–924, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atkin O.K., Macherel D.: The crucial role of plant mitochondria in orchestrating drought tolerance.–Ann. Bot.-London 103: 581–597, 2009.CrossRefGoogle Scholar
  4. Atkin O.K., Tjoelker M.G.: Thermal acclimation and the dynamic response of plant respiration to temperature.–Trends Plant Sci. 8: 343–351, 2003.CrossRefPubMedGoogle Scholar
  5. Bauer H., Martha P.: The CO2 compensation point of C3 plants–a re-examination. I. Interspecific variability.–Z. Pflanzenphysiol. 103: 445–450, 1981.CrossRefGoogle Scholar
  6. Cernusak L.A., Aranda J., Marshall J.D., Winter K.: Large variation in whole-plant water-use efficiency among tropical tree species.–New Phytol. 173: 294–305, 2007.CrossRefPubMedGoogle Scholar
  7. Cernusak L.A., Winter K., Martínez C. et al.: Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration.–Plant Physiol. 157: 372–385, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cowan I.R.: Regulation of water use in relation to carbon gain in higher plants.–In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (ed.): Physiological Plant Ecology II. Encyclopedia of Plant Physiology (New Series), Vol. 12/B. Pp. 589–613. Springer, Berlin–Heidelberg, 1982.CrossRefGoogle Scholar
  9. Crafts-Brandner S.J., Salvucci M.E.: Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2.–P. Natl. Acad. Sci. USA 97: 13430–13435, 2000.CrossRefGoogle Scholar
  10. Ehleringer J.R., Björkman O.: A comparison of photosynthetic characteristics of Encelia species possessing glabrous and pubescent leaves.–Plant Physiol. 62: 185–190, 1978.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Franks P.J., Cowan I.R., Farquhar G.D.: The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees.–Plant Cell Environ. 20: 142–145, 1997.CrossRefGoogle Scholar
  12. Foyer C., Noctor G.: Oxygen processing in photosynthesis: regulation and signaling.–New Phytol. 146: 359–388, 2000.CrossRefGoogle Scholar
  13. Hikosaka K., Ishikawa K., Borjigidai A. et al.: Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate.–J. Exp. Bot. 57: 291–302, 2006.CrossRefPubMedGoogle Scholar
  14. Huner N.P., Öquist G., Sarhan F.: Energy balance and acclimation to light and cold.–Trends Plant Sci. 3: 224–230, 1998.CrossRefGoogle Scholar
  15. Kirschbaum M.U., Farquhar G.D.: Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora.–Plant Physiol. 83: 1032–1036, 1987.CrossRefPubMedPubMedCentralGoogle Scholar
  16. McDermitt D.K., Norman J.M., Davis J.T. et al.: CO2 response curves can be measured with a field-portable closed-loop photosynthesis system.–Ann. Sci. For. 46: S416–S420, 1989.CrossRefGoogle Scholar
  17. Pasiecznik N.M., Felker P., Harris P.J. et al.: The Prosopis juliflora: Prosopis pallida Complex: A Monograph. Pp. 172. HDRA, Coventry 2001.Google Scholar
  18. Pathre U.V., Sinha A.K., Shirke P.A., Sane P.V.: Factors determining the midday depression of photosynthesis in trees under monsoon climate.–Trees-Struct. Funct. 12: 472–481, 1998.CrossRefGoogle Scholar
  19. Pathre U.V., Sinha A.K., Shirke P.A., Sane P.V.: Midday decline in trees.–In: Mathis P. (ed.): Photosynthesis: from Light to Biosphere, Vol. 5. Pp. 67–70. Kluwer Acad. Publ., Dordrecht 1995.Google Scholar
  20. Pathre U.V., Sinha A.K., Shirke P.A., Ranade S.A.: Diurnal and seasonal modulation of sucrose phosphate synthase activity in leaves of Prosopis juliflora.–Biol. Plantarum 48: 227, 2004.CrossRefGoogle Scholar
  21. Pearcy R.W.: Acclimation of photosynthetic and respiratory carbon dioxide exchange to growth temperature in Atriplex lentiformis (Torr.) Wats.–Plant Physiol. 59: 795–799, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Salvucci M.E., Crafts-Brandner S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments.–Plant Physiol. 134: 1460–1470, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Shirke P.A., Pathre U.V.: Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress.–Photosynthetica 41: 83–89, 2003.CrossRefGoogle Scholar
  24. Shirke P.A., Pathre U.V.: Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora.–J. Exp. Bot. 55: 2111–2120, 2004a.CrossRefPubMedGoogle Scholar
  25. Shirke P.A., Pathre U.V.: Modulation of Rubisco activity in leaves of Prosopis juliflora in response to tropical conditions in north India.–Acta Physiol. Plant. 26: 131–139, 2004b.CrossRefGoogle Scholar
  26. Shirke P.A.: Leaf photosynthesis, dark respiration and fluorescence as influenced by leaf age in an evergreen tree, Prosopis juliflora.–Photosynthetica 39: 305–311, 2001.CrossRefGoogle Scholar
  27. Sinha A.K., Shirke P.A., Pathre U., Sane P.V.: Midday depression in photosynthesis: effect on sucrose-phosphate synthase and ribulose-1,5-bisphosphate carboxylase in leaves of Prosopis juliflora (Swartz) DC.–Photosynthetica 34: 115–124, 1997.CrossRefGoogle Scholar
  28. Smith N.G., Dukes J.S.: Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2.–Glob. Change Biol. 19: 45–63, 2013.CrossRefGoogle Scholar
  29. Tenhunen J.D., Lange O.L., Harley P.C. et al.: Limitations due to water stress on leaf net photosynthesis of Quercus coccifera in the Portuguese evergreen scrub.–Oecologia 67: 23–30, 1985.CrossRefPubMedGoogle Scholar
  30. Tenhunen J.D., Harley P.C., Beyschlag W., Lange O.L.: A model of net photosynthesis for leaves of the sclerophyll Quercus coccifera.–In: Tenhunen J.D., Catarino F.M., Lange O.L., Oechel W.C. (ed.): Plant Response to Stress. NATO ASI Series (Series G: Ecological Sciences), Vol. 15. Pp. 339–354. Springer, Berlin–Heidelberg 1987.CrossRefGoogle Scholar
  31. Tezara W., Fernández M.D., Donoso C., Herrera A.: Seasonal changes in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem.–Photosynthetica 35: 399–410, 1998.CrossRefGoogle Scholar
  32. Troeng E., Linder S.: Gas exchange in a 20-year-old stand of Scots pine.: II Variation in net photosynthesis and transpiration within and between trees.–Physiol. Plantarum 54: 15–23, 1982.CrossRefGoogle Scholar
  33. Villar R., Held A.A., Merino J.: Comparison of methods to estimate dark respiration in the light in leaves of two woody species.–Plant Physiol. 105: 167–172, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Villar R., Held A.A., Merino J.: Dark leaf respiration in light and darkness of an evergreen and a deciduous plant species.–Plant Physiol. 107: 421–427, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Weber J.A., Jurik T.W., Tenhunen J.D., Gates D.M.: Analysis of gas exchange in seedlings of Acer saccharum: integration of field and laboratory studies.–Oecologia 65: 338–347, 1985.CrossRefPubMedGoogle Scholar
  36. Weerasinghe L.K., Creek D., Crous K.Y. et al.: Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland.–Tree Physiol. 34: 564–584, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Plant Physiology LaboratoryCSIR# - National Botanical Research InstituteLucknowIndia

Personalised recommendations