Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ferredoxin: the central hub connecting photosystem I to cellular metabolism

  • 246 Accesses

  • 2 Citations

Abstract

Ferredoxin (Fd) is a small soluble iron-sulfur protein essential in almost all oxygenic photosynthetic organisms. It contains a single [2Fe-2S] cluster coordinated by four cysteine ligands. It accepts electrons from the stromal surface of PSI and facilitates transfer to a myriad of acceptors involved in diverse metabolic processes, including generation of NADPH via Fd-NADP-reductase, cyclic electron transport for ATP synthesis, nitrate reduction, nitrite reductase, sulfite reduction, hydrogenase and other reductive reactions. Fd serves as the central hub for these diverse cellular reactions and is integral to complex cellular metabolic networks. We describe advances on the central role of Fd and its evolutionary role from cyanobacteria to algae/plants. We compare structural diversity of Fd partners to understand this orchestrating role and shed light on how Fd dynamically partitions between competing partner proteins to enable the optimum transfer of PSI-derived electrons to support cell growth and metabolism.

This is a preview of subscription content, log in to check access.

Abbreviations

APC:

allophycocyanin

BR:

bilin reductases

CET:

cyclic electron transfer

Cyt:

cytochrome

Fd:

ferredoxin

Fdred :

reduced Fd

Fdox :

oxidized Fd

FAD:

flavin adenine dinucleotide

FMN:

flavin mononucleotide

FNR:

Fd-NADP+-reductase

FNRred :

reduced FNR

FNRox :

oxidized FNR

FTR:

Fd:Tro reductase

GnS:

glutamine synthase

GS:

glutamate synthase

Kd :

dissociation constant

Ket :

electron transfer rate constant

NDH:

NADPH dehydrogenase

NiR:

nitrite reductase

NR:

nitrate reductase

PC:

phycocyanin

PCB:

3E/3Z phycocyanobilin

PE:

phycoerythrin

PEB:

3Z/3E phycoerythrobilin

PΦB:

3E/3Z phytochromobilin

RMSD:

root-mean-square deviation

SiR:

sulfite reductase

Tro:

thioredoxin

References

  1. Akagi J.M.: The participation of a ferredoxin of Clostridium nigrificans in sulfite reduction.–Biochem. Biophys. Res. Co. 21: 72–77, 1965.

  2. Akashi T., Matsumura T., Ideguchi T.: Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP(+) reductase and sulfite reductase.–J. Biol. Chem. 274: 29399–29405, 1999.

  3. Appel J., Schulz R.: Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising?–J. Photoch. Photobio. B 47: 1–11, 1998.

  4. Arizmendi J.M., Serra J.L.: Composition of the ferredoxin-nitrite reductase from the cyanobacterium Phormidium laminosum.–Biochem. Soc. T. 18: 637–638, 19

  5. Arnon D.I., Allen M.B., Whatley F.R.: Photosynthesis by isolated chloroplasts.–Nature 174: 394–396, 1954.

  6. Arnon D.I., Tsujimoto H.Y., McSwain B.D.: Ferredoxin and photosynthetic phosphorylation.–Nature 214: 562–566, 1967.

  7. Arnon D.I., Whatley F.R., Allen M.B.: Triphosphopyridine nucleotide as a catalyst of photosynthetic phosphorylation.–Nature 180: 182–185, 1957.

  8. Balsera M., Uberegui E., Susanti D. et al.: Ferredoxin: thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria.–Planta 237: 619–635, 2013.

  9. Beale S.I., Cornejo J.: Biosynthesis of phycobilins. Ferredoxinmediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium.–J. Biol. Chem. 266: 22328–22332, 1991.

  10. Benemann J.R., Berenson J.A., Kaplan N.O., Kamen M.D.: Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system.–P. Natl. Acad. Sci. USA 70: 2317–2320, 1973.

  11. Bes M.T., Parisini E., Inda L.A. et al.: Crystal structure determination at 1.4 Å resolution of ferredoxin from the green alga Chlorella fusca.–Structure 7: 1201–1202, 19

  12. Blanco N.E., Ceccoli R.D., Via M.V. et al.: Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow.–Plant Physiol. 161: 866–879, 2013.

  13. Böhme H.: On the role of ferredoxin and ferredoxin-NADP+ reductase in cyclic electron transport of spinach chloroplasts.–FEBS J. 72: 283–289, 1977.

  14. Brand J.J., Wright J.N., Lien S.: Hydrogen production by eukaryotic algae.–Biotechnol. Bioeng. 33: 1482–1488, 1989.

  15. Buchanan B.B.: Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development.–Arch. Biochem. Biophys. 288: 1–9, 1991.

  16. Buchanan B.B., Schürmann P., Wolosiuk R.A., Jacquot J.P.: The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond.–Photosynth. Res. 73: 215–222, 2002.

  17. Busch A.W.U., Reijerse E.J., Lubitz W. et al.: Structural and mechanistic insight into the ferredoxin-mediated two-electron reduction of bilins.–Biochem. J. 439: 257–264, 2011.

  18. Cashman D.J., Zhu T., Simmerman R.F. et al.: Molecular interactions between photosystem I and ferredoxin: an integrated energy frustration and experimental model.–J. Mol. Recognit. 27: 597–608, 2014.

  19. Chang C.H., King P.W., Ghirardi M.L., Kim K.: Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii.–Biophys. J. 93: 3034–3045, 20

  20. Chen J.S., Blanchard D.K.: A simple hydrogenase-linked assay for ferredoxin and flavodoxin.–Anal. Biochem. 93: 216–222, 1979.

  21. Curtis V.A., Siedow J.N., San Pietro A.: Studies on photosystem I. II. Involvement of ferredoxin in cyclic electron flow.–Arch. Biochem. Biophys. 158: 898–902, 1973.

  22. Dai S., Johansson K., Miginiac-Maslow M.: Structural basis of redox signaling in photosynthesis: structure and function of ferredoxin:thioredoxin reductase and target enzymes.–Photosynth. Res. 79: 233–248, 2004.

  23. Dai S., Schwendtmayer C., Johansson K. et al.: How does light regulate chloroplast enzymes? Structure–function studies of the ferredoxin/thioredoxin system.–Q. Rev. Biophys. 33: 67–108, 2000.

  24. DalCorso G., Pesaresi P., Masiero S. et al: A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.–Cell 132: 273–285, 2008.

  25. Dammeyer T., Frankenberg-Dinkel N.: Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms.–Photochem. Photobiol. S. 7: 1121–1130, 2008.

  26. Davenport H.E., Hill R., Whatley F.R.: A natural factor catalyzing reduction of methaemoglobin by isolated chloroplasts.–P. Roy. Soc. B-Biol. Sci. 139: 346–358, 1952.

  27. Diakonova A.N., Khrushchev S.S., Kovalenko I.B. et al.: Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction.–Phys. Biol. 13: 056004, 2016.

  28. Domínguez-Martín M.A., Gómez-Baena G., Díez J. et al.: Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in Prochlorococcusmarinus SS120.–mSystems 2: m8–17, 2017.

  29. Dose M.M., Hirasawa M., Kleis-SanFrancisco S. et al.: The ferredoxin-binding site of ferredoxin: Nitrite oxidoreductase. Differential chemical modification of the free enzyme and its complex with ferredoxin.–Plant Physiol. 114: 1047–1053, 1997.

  30. Droux M., Miginiac-Maslow M., Jacquot J.P. et al.: Ferredoxinthioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation.–Arch. Biochem. Biophys. 256: 372–380, 1987.

  31. Essemine J., Qu M., Mi H., Zhu X.G.: Response of chloroplast NAD(P)H dehydrogenase-mediated cyclic electron flow to a shortage or lack in ferredoxin-quinone oxidoreductasedependent pathway in rice following short-term heat stress.–Front. Plant Sci. 7: 383, 2016.

  32. Forestier M., King P., Zhang L. et al.: Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions.–Eur. J. Biochem. 270: 2750–2758, 2003.

  33. Foyer C.H., Ferrario-Méry S., Noctor G.: Interactions between carbon and nitrogen metabolism.–In: Lea P.J., Morot-Gaudry J.-F. (ed.): Plant Nitrogen. Pp. 237–254. Springer, Berlin 2001.

  34. Fredricks W.W., Stadtman E.R.: The role of ferredoxin in the hydrogenase system from Clostridium kluyveri.–J. Biol. Chem. 240: 4065–4071, 1965.

  35. Fry I., Papageorgiou G., Telor E., Packer L.: Reconstitution of a system for H-2 Evolution with chloroplasts, ferredoxin, and hydrogenase.–Z. Naturforsch. C 32: 110–117, 1977.

  36. Garcia-Sanchez M.I., Gotor C., Jacquot J.P. et al.: Critical residues of Chlamydomonas reinhardtii ferredoxin for interaction with nitrite reductase and glutamate synthase revealed by site-directed mutagenesis.–Eur. J. Biochem. 250: 364–368, 1997.

  37. Ghirardi M.L.: Hydrogen production by photosynthetic green algae.–Indian J. Biochem. Bio. 43: 201–210, 2006.

  38. Gómez-Lojero C., Pérez-Gómez B., Shen G. et al.: Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002.–Biochemistry 42: 13800–13811, 2003.

  39. Goñi G., Serrano A., Frago S. et al.: Flavodoxin-mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena: role of flavodoxin hydrophobic residues in protein-protein interactions.–Biochemistry 47: 1207–1217, 2008.

  40. Gou P., Hanke G.T., Kimata-Ariga Y. et al.: Higher order structure contributes to specific differences in redox potential and electron transfer efficiency of root and leaf ferredoxins.–Biochemistry 45: 14389–14396, 2006.

  41. Gutekunst K., Chen X., Schreiber K. et al.: The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions.–J. Biol. Chem. 289: 1930–1937, 2014.

  42. Halbleib C.M., Ludden P.W.: Regulation of biological nitrogen fixation.–J. Nutr. 130: 1081–1084, 2000.

  43. Hanke G., Mulo P.: Plant type ferredoxins and ferredoxindependent metabolism.–Plant Cell Environ. 36: 1071–1084, 2013.

  44. Happe T., Kaminski A.: Differential regulation of the Fehydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii.–Eur. J. Biochem. 269: 1022–1032, 20

  45. Hase T., Schürmann P., Knaff D.B.: The interaction of ferredoxin with ferredoxin-dependent enzymes.–In: Golbeck J.H. (ed.): Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. Pp. 477–498. Springer, Dordrecht 2006.

  46. Hennies H.H.: (1975) [A ferredoxin-linked sulfite reductase from Spinacia oleracea.]–Z. Naturforsch. C 30: 359–362, 1975.

  47. Hertle A.P., Blunder T., Wunder T. et al.: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow.–Mol. Cell 49: 511–523, 2013.

  48. Hirasawa M., Chang K.T., Knaff D.B.: The interaction of ferredoxin and glutamate synthase–cross-linking and immunological studies.–Arch. Biochem. Biophys. 286: 171–177, 1991.

  49. Hirasawa M., de Best J.H., Knaff D.B.: The effect of lysinemodifying and arginine-modifying reagents on spinach ferredoxin–nitrite oxidoreductase.–BBA-Bioenergetics 1140: 304–312, 1993.

  50. Hirasawa M., Hurley J.K., Salamon Z. et al.: Oxidation-reduction and transient kinetic studies of spinach ferredoxin-dependent glutamate synthase.–Arch. Biochem. Biophys. 330: 209–215, 1996.

  51. Hirasawa M., Knaff D.B.: The role of lysine and arginine residues at the ferredoxin-binding site of spinach glutamate synthase.–BBA-Bioenergetics 1144: 85–91, 1993.

  52. Hirasawa M., Tollin G., Salamon Z., Knaff D.B.: Transient kinetic and oxidation-reduction studies of spinach ferredoxin:nitrite oxidoreductase.–Biochim. Biophys. Acta 1185: 336–345, 1994.

  53. Hirasawa M., Tripathy J.N., Somasundaram R. et al.: The interaction of spinach nitrite reductase with ferredoxin: a sitedirected mutation study.–Mol. Plant. 2: 407–415, 2009.

  54. Hirasawa M., Tripathy J.N., Sommer F. et al.: Enzymatic properties of the ferredoxin-dependent nitrite reductase from Chlamydomonas reinhardtii. Evidence for hydroxylamine as a late intermediate in ammonia production.–Photosynth. Res. 103: 67–77, 2010.

  55. Hosler J.P., Yocum C.F.: Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport: Effect of DCMU and the NADPH/NADP ratio.–Plant Physiol. 83: 965–969, 1987.

  56. Hu X., Kato Y., Sumida A. et al.: The SUFBC2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins.–Plant J. 90: 235–248, 2017.

  57. Hurley J.K., Hazzard J.T., Martínez-Júlvez M. et al.: Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials.–Protein Sci. 8: 1614–1622, 1999.

  58. Hurley J.K., Tollin G., Medina M., Gómez-Moreno C.: Electron transfer from ferredoxin and flavodoxin to ferredoxin:NADP+ reductase.–In: Golbeck J.H. (ed.): Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. Pp. 455–476. Springer, Dordrecht 2006.

  59. Ivanov B.N., Tikhonova L.N.: [Porton uptake by isolated chloroplasts during cyclic and non-cyclic electron transport catalyzed by photosystem I in the presence of ferredoxin].–Biokhimiia 44: 983–989, 1979.

  60. Iwai M., Takizawa K., Tokutsu R. et al.: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis.–Nature 464: 1210–1213, 2010.

  61. Kameda H., Hirabayashi K., Wada K., Fukuyama K.: Mapping of protein-protein interaction sites in the plant-type [2Fe-2S] ferredoxin.–PLoS ONE 6: e21947, 2011.

  62. Kapoor K., Cashman D.J., Nientimp L. et al.: Binding mechanisms of electron transport proteins with cyanobacterial photosysten I: an integrated computational and experimental model.–J. Phys. Chem. B. 122: 1026–1036, 2018.

  63. Keister D.L., San Pietro A., Stolzenbach F.E.: Photosynthetic pyridine nucleotide reductase. III. Effect of phosphate acceptor system on triphosphopyridine nucleotide reduction.–Arch. Biochem. Biophys. 94: 187–195, 1961.

  64. Kim J.Y., Kinoshita M., Kume S. et al.: Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity.–Biochem. J. 473: 3837–3854, 2016a.

  65. Kim J.Y., Nakayama M., Toyota H. et al.: Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin.–J. Biochem. 160: 101–109, 2016b.

  66. Kimata-Ariga Y., Hase T.: Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.–PLoS ONE 9: e108965, 2014.

  67. Koguchi O., Tamura G.: Isolation and partial characterization of homogeneous ferredoxin-sulfite reductase from a red alga, Porphyra yezoensis.–Agr. Biol. Chem. Tokyo 53: 1653–1662, 1989.

  68. Kosourov S., Seibert M., Ghirardi M.L.: Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H-2-producing Chlamydomonas reinhardtii cultures.–Plant Cell Physiol. 44: 146–155, 2003.

  69. Kovalenko I.B., Diakonova A.N., Abaturova A.M. et al.: Direct computer simulation of ferredoxin and FNR complex formation in solution.–Phys Biol 7: 026001, 2010.

  70. Kovalenko I.B., Abaturova A.M., Riznichenko G.Y. et al.: Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin.–Biosystems 103: 180–187, 2011.

  71. Krendeleva T.E., Kukarskikh G.P., Timofeev K.N. et al.: Ferredoxin-NADP reductase is involved in the ferredoxindependent cyclic electron transport in isolated thylakoids.–Dokl. Biochem. Biophys. 379: 265–268, 2001.

  72. Krueger R.J., Siegel L.M.: Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase.–Biochemistry 21: 2892–2904, 1982a.

  73. Krueger R.J., Siegel L.M.: Evidence for siroheme-Fe4S4 interaction in spinach ferredoxin-sulfite reductase.–Biochemistry 21: 2905–2909, 1982b.

  74. Kurisu G., Kusunoki M., Katoh E. et al.: Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase.–Nat. Struct. Biol. 8: 117–121, 2001a.

  75. Kurisu G., Kusunoki M., Kimata-Ariga Y. et al.: Structure of the electron transfer complex between plant type ferredoxin and ferredoxin dependent assimilatory enzymes.–Protein Nucl. Acid Enzyme 46: 1661–1667, 2001b.

  76. Lehtimäki N., Lintala M., Allahverdiyeva Y. et al.: Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer–J. Plant Physiol. 167: 1018–1022, 2010.

  77. Lehtimäki N., Koskela M.M., Dahlstrom K.M. et al.: Posttranslational modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis chloroplasts.–Plant Physiol. 166: 1764–1776, 2014.

  78. Long H., Chang C.H., King P.W. et al.: Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii.–Biophys. J. 95: 3753–3766, 20

  79. Long H., King P.W., Ghirardi M.L. et al.: Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association.–J. Phys. Chem. A 113: 4060–4067, 2009.

  80. Luque I., Flores E., Herrero A.: Molecular mechanism for the operation of nitrogen control in cyanobacteria.–EMBO J. 13: 2862–2869, 1994.

  81. Manzano C., Candau P., Gomez-Moreno C. et al.: Ferredoxindependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans.–Mol. Cell Biochem. 10: 161–169, 19

  82. Marco P., Kozuleva M., Eilenberg H. et al.: Binding of ferredoxin to algal photosystem I involves a single binding site and is composed of two thermodynamically distinct events.–BBA-Bioenergetics 1859: 234–243, 2018.

  83. Matsuoka M., Kikuchi T.: Sequence analysis on the information of folding initiation segments in ferredoxin-like fold proteins.–BMC Struct. Biol. 14: 15, 2014.

  84. Melis A., Zhang L., Forestier M. et al.: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii.–Plant Physiol. 122: 127–136, 20

  85. Melis A,. Happe T.: Hydrogen production. green algae as a source of energy.–Plant Physiol. 127: 740–748, 2001.

  86. Mi H.L., Endo T., Ogawa T. et al.: Thylakoid membrane-bound, nadph-specific pyridine-nucleotide dehydrogenase complex mediates cyclic electron-transport in the cyanobacterium Synechocystis Sp Pcc-68038.–Plant Cell Physiol. 36: 661–668, 1995a.

  87. Mi H.L., Endo T., Ogawa T. et al.: Cyclic electron transport mediated by thylakoid-bound, NADPH-specific pyridine nucleotide dehydrogenase in cyanobacteria.–In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere, Vol. II. Pp. 871–874. Springer, Dordrecht 1995b.

  88. Mikami B., Ida S.: Spinach ferredoxin-nitrite reductase: characterization of catalytic activity and interaction of the enzyme with substrates.–J. Biochem. 105: 47–50, 1989.

  89. Moolna A., Bowsher C.G.: The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat.–J. Exp. Bot. 61: 2669–2681, 2010.

  90. Morales R., Kachalova G., Vellieux F. et al.: Crystallographic studies of the interaction between the ferredoxin-NADP(+) reductase and ferredoxin from the cyanobacterium Anabaena: looking for the elusive ferredoxin molecule.–Acta Crystallogr. D 56: 1408–1412, 2000.

  91. Mortenson L.E., Valentine R.C., Carnahan J.E.: An electron transport factor from Clostridium pasteurianum.–Biochem. Biophys. Res. Co. 7: 448–452, 19

  92. Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis.–Cell 110: 361–371, 20

  93. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis.–Nature 429: 579–582, 2004.

  94. Nakayama M., Akashi T., Hase T.: Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin.–J. Inorg. Biochem. 82: 27–32, 2000.

  95. Nath K., O’Donnell J.P., Lu Y.: Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness.–Plant Signal. Behav. 12: e1282023, 2017.

  96. Neuwirth E.: RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColor Brewer, 2014.

  97. Ogawa T.: A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis Pcc6803.–P. Natl. Acad. Sci. USA 88: 4275–4279, 1991.

  98. Omairi-Nasser A., Galmozzi C. V., Latifi A. et al.: NtcA is responsible for accumulation of the small isoform of ferredoxin:NADP oxidoreductase.–Microbiology 160: 789–794, 2014.

  99. Privalle L.S., Privalle C.T., Leonardy N.J. et al.: Interactions between spinach ferredoxin-nitrite reductase and its substrates. Evidence for the specificity of ferredoxin.–J. Biol. Chem. 260: 14344–14350, 1985.

  100. R Core Team: R: A language and environment for statistical computing.–R Foundation for Statistical Computing, Vienna, Austria. 2013.

  101. R’zaigui M., Hatchikian E.C., Benlian D.: Redox reactions of the hydrogenase-cytochrome C3 system from Desulfovibrio gigas with the synthetic analogue of ferredoxin active site [Fe4S4 (SCH2-CH2OH)4]2–.–Biochem. Biophys. Res. Co. 92: 1258–1265, 19

  102. Rumpel S., Siebel J.F., Diallo M. et al.: Structural insight into the complex of ferredoxin and [FeFe] hydrogenase from Chlamydomonas reinhardtii.–Chembiochem. 16: 1663–1669, 20

  103. Saitoh T., Ikegami T., Nakayama M. et al: NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase: mapping the interaction sites of ferredoxin.–J. Biol. Chem. 281: 10482–10488, 2006.

  104. Schmitz O., Kentemich T., Zimmer W. et al.: Identification of the nifJ gene coding for pyruvate: ferredoxin oxidoreductase in dinitrogen-fixing cyanobacteria.–Arch. Microbiol. 160: 62–67, 1993.

  105. Schmitz S., Böhme H.: Amino-acid-residues involved in functional interaction of vegetative cell ferredoxin from the cyanobacterium Anabaena Sp Pcc-7120 with ferredoxin-NADP reductase, nitrite reductase and nitrate reductase.–BBA-Bioenergetics 1231: 335–341, 1995.

  106. Sekine K., Sakakibara Y., Hase T. et al: A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in the unicellular red alga Cyanidioschyzon merolae.–Biochem. J. 423: 91–98, 2009.

  107. Setif P.: Ferredoxin and flavodoxin reduction by photosystem I.–BBA-Bioenergetics 1507: 161–179, 2001.

  108. Setya A., Murillo M., Leustek T.: Sulfate reduction in higher plants: Molecular evidence for a novel 5’-adenylylsulfate reductase.–P. Natl. Acad. Sci. USA 93: 13383–13388, 1996.

  109. Shahak Y., Crowther D. Hind G.: The involvement of ferredoxin-NADP+ reductase in cyclic electron transport in chloroplasts.–Biochim. Biophys. Acta 636: 234–243, 1981.

  110. Shrestha N.K., Kamachi T., Okura I.: Hydrogen evolution from glucose with the combination of glucose dehydrogenase, ferredoxin NADP reductase and hydrogenase from A. eutrophus H16.–React. Kinet. Catal. L. 70: 281–285, 2000.

  111. Sievers F., Wilm A., Dineen D. et al.: Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega.–Mol. Syst. Biol. 7: 2011.

  112. Srivastava A.P., Allen J.P., Vaccaro B.J. et al.: Identification of amino acids at the catalytic site of a ferredoxin-dependent cyanobacterial nitrate reductase.–Biochemistry 54: 5557–5568, 2015.

  113. Staples C.R., Ameyibor E., Fu W. et al.: The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters.–Biochemistry 35: 11425–11434, 1996.

  114. Suzuki A., Knaff D.B.: Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism.–Photosynth. Res. 83: 191–217, 2005.

  115. Swamy U., Wang M., Tripathy J.N. et al.: Structure of spinach nitrite reductase: implications for multi-electron reactions by the iron-sulfur:siroheme cofactor.–Biochemistry 44: 16054–16063, 2005.

  116. Tagawa K., Arnon D.I.: Ferredoxins as electron carriers in photosynthesis and in biological production and consumption of hydrogen gas.–Nature 195: 537–543, 1962.

  117. Talts E., Oja V., Ramma H. et al.: Dark inactivation of ferredoxin-NADP reductase and cyclic electron flow under farred light in sunflower leaves.–Photosynth. Res. 94: 109–120, 2007.

  118. Tano K., Schrauzer G.N.: Chemical evolution of a nitrogenase model. VIII. Ferredoxin model compounds as electron transfer catalysts and reducing agents in the simulation of nitrogenase and hydrogenase reactions.–J. Am. Chem. Soc. 97: 5404–5408, 1975.

  119. Tripathy J.N., Hirasawa M., Kim S.K. et al.: The role of tryptophan in the ferredoxin-dependent nitrite reductase of spinach.–Photosynth. Res. 94: 1–12, 2007.

  120. Tsukihira T., Fukuyama K., Nakamura M. et al.: X-ray analysis of a [2Fe-2S] ferrodoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5 A resolution.–J. Biochem. 90: 1763–1773, 1981.

  121. Tsygankov A., Kosourov S., Seibert M. et al.: Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures.–Int. J. Hydrogen. Energ. 27: 1239–1244, 2002.

  122. van Hoewyk D., Abdel-Ghany S.E., Cohu C.M. et al.: Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS.–P. Natl. Acad. Sci. USA 104: 5686–5691, 2007.

  123. Vangone A., Spinelli R., Scarano V. et al.: COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes.–Bioinformatics 27: 2915–2916, 2011.

  124. Vangone A., Oliva R., Cavallo L.: CONS-COCOMAPS: a novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions.–BMC Bioinformatics 13: S19, 2012.

  125. Voss I., Goss T., Murozuka E. et al.: FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I.–J. Biol. Chem. 286: 50–59, 2011.

  126. Vuorijoki L., Tiwari A., Kallio P. et al.: Inactivation of ironsulfur cluster biogenesis regulator SufR in Synechocystis sp. PCC 6803 induces unique iron-dependent protein-level responses.–Biochim. Biophys. Acta 1861: 1085–1098, 2017.

  127. Wei T., Simko V., Levy M et al.: Corrplot. R package "corrplot": Visualization of a Correlation Matrix (Version 0.82) (https://github.com/taiyun/corrplot), 2017.

  128. Whatley F.R., Allen M.B., Arnon D.I.: Photosynthetic phosphorylation as an anaerobic process.–Biochim. Biophys. Acta 16: 605–606, 1955.

  129. Yang C., Hu H., Ren H. et al: LIGHT-INDUCED RICE1 regulates light-dependent attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the thylakoid membrane in rice and Arabidopsis.–Plant Cell 28: 712–728, 2016.

  130. Yang J., Xie X., Yang M. et al.: Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.–P. Natl. Acad. Sci. USA 114: E2460–E2465, 2017.

  131. Ye J.Y., Wang Y.J.: The involvement of ferredoxin-NADP reductase in the photosynthetic cyclic electron transport.–Acta Biochim. Biophys. Sinica 29: 40–45, 1997.

  132. Yoneyama T., Fujimori T., Yanagisawa S. et al.: 15N tracing studies on in vitro reactions of ferredoxin-dependent nitrite reductase and glutamate synthase using reconstituted electron donation systems.–Plant Cell Physiol. 56: 1154–1161, 2015

Download references

Author information

Correspondence to B. D. Bruce.

Additional information

Acknowledgments: Support to B.D.B. and J.M. has been provided from the Gibson Family Foundation, the Tennessee Plant Research Center, and the Dr. Donald L. Akers Faculty Enrichment Fellowship to B.D.B. and National Science Foundation support to B.D.B. (DGE-0801470 and EPS-1004083). J.M. has also been supported by a seed grant from Institute for Secure and Sustainable Environment, UTK and a donation from the Hallsdale-Powell Utility District. We thank Nathan G. Brady and Alexandra H. Teodor for critically reading the manuscript. We thank Sarah J. Cooper for her immense help in data analysis using the CoCoMaps server. Travel to 7th International Meeting on Sustainable Research in Photosynthesis was provided by the Tennessee Plant Research Center for J. M.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mondal, J., Bruce, B.D. Ferredoxin: the central hub connecting photosystem I to cellular metabolism. Photosynthetica 56, 279–293 (2018). https://doi.org/10.1007/s11099-018-0793-9

Download citation

Additional key words

  • cellular metabolism
  • electron transfer
  • ferredoxin
  • global interaction
  • oxidation-reduction