, Volume 56, Issue 1, pp 316–321 | Cite as

Effect of green light on the amount and activity of NDH-1–PSI supercomplex in Synechocystis sp. strain PCC 6803

  • F. Gao
  • T. Ogawa
  • W. Ma


Cyanobacterial NDH-1 interacts with PSI to form NDH-1–PSI supercomplex. CpcG2, a linker protein for the PSI-specific peripheral antenna CpcG2-phycobilisome, is essential for stabilization of the supercomplex. Green light (GL) increased the expression of CpcG2 but had little effect, if any, on the expression of NDH-1 and PSI, when compared to the abundance of these components under red light (RL). The increased expression of CpcG2 intensified the band of NDH-1–PSI supercomplex after blue-native gel electrophoresis of the thylakoid membrane, possibly by stabilizing the supercomplex. The activity of NDH-1-dependent cyclic electron transport around PSI increased when cells grown under RL were transferred to a low intensity GL but was suppressed when cells were grown under high intensities of GL. The functionality of PSI showed the same trend. We thus conclude that GL increases the expression of CpcG2, thereby increasing the abundance of the NDH-1–PSI supercomplex and its activity at low GL but not at higher GL.

Additional key words

chlorophyll fluorescence cyanobacteria cyclic electron transport around PSI light-harvesting antenna light quality P700 analysis 





Coomassie Brilliant Blue






green light


NDH-1-dependent cyclic electron transport around PSI




the maximal P700 change


red light

Synechocystis 6803

Synechocystis sp. strain PCC 6803


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen M.M.: Simple conditions for growth of unicellular bluegreen algae on plates.–J. Phycol. 4: 1–4, 1968.CrossRefPubMedGoogle Scholar
  2. Battchikova N., Wei L., Du L. et al.: Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of Synechocystis sp. PCC 6803.–J. Biol. Chem. 286: 36992–37001, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Burrows P.A., Sazanov L.A., Svab Z. et al.: Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes.–EMBO J. 17: 868–876, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dai H., Zhang L., Zhang J. et al.: Identification of a cyanobacterial CRR6 protein, Slr1097, required for efficient assembly of NDH-1 complexes in Synechocystis sp. PCC 6803.–Plant J. 75: 858–866, 2013.CrossRefPubMedGoogle Scholar
  5. Fujita Y., Murakami A.: Regulation of electron transport composition in cyanobacterial photosynthetic system: stoichiometry among photosystem I and II complexes and their light harvesting antennae and cytochrome b6/f complex.–Plant Cell Physiol. 28: 1547–1553, 1987.Google Scholar
  6. Fujita Y., Ohki K., Murakami A.: Chromatic regulation of photosystem composition in the photosynthetic system of red and blue-green algae.–Plant Cell Physiol. 26: 1541–1548, 1985.Google Scholar
  7. Gao F., Zhao J., Chen L. et al.: The NDH-1L-PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria.–Plant Physiol. 172: 1451–1464, 2016a.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gao F., Zhao J., Wang X. et al.: NdhV is a subunit of NADPH dehydrogenase essential for cyclic electron transport in Synechocystis sp. strain PCC 6803.–Plant Physiol. 170: 752–760, 2016b.CrossRefPubMedGoogle Scholar
  9. Gombos Z., Wada H., Murata N.: The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance.–P. Natl. Acad. Sci. USA 91: 8787–8791, 1994.CrossRefGoogle Scholar
  10. Hirose Y., Shimada T., Narikawa R. et al.: Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein.–P. Natl. Acad. Sci. USA 105: 9528–9533, 2008.CrossRefGoogle Scholar
  11. Katoh T., Gantt E.: Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis.–BBA-Bioenergetics 546: 383–393, 19CrossRefPubMedGoogle Scholar
  12. Klughammer C., Schreiber U.: Saturation pulse method for assessment of energy conversion in PSI.–PAM Appl. Notes 1: 11–14, 2008.Google Scholar
  13. Kondo K., Geng X.X., Katayama M., Ikeuchi M.: Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803.–Photosynth. Res. 84: 269–273, 2005.CrossRefPubMedGoogle Scholar
  14. Kondo K., Ochiai Y., Katayama M., Ikeuchi M.: The membrane associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna.–Plant Physiol. 144: 1200–1210, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kondo K., Mullineaux C.W., Ikeuchi M.: Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803.–Photosynth. Res. 99: 217–225, 2009.CrossRefPubMedGoogle Scholar
  16. Kügler M., Jänsch L., Kruft V. et al.: Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE).–Photosynth. Res. 53: 35–44, 1997.CrossRefGoogle Scholar
  17. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.–Nature 227: 680–685, 1970.CrossRefPubMedGoogle Scholar
  18. Ma W., Mi H.: Expression and activity of type 1 NAD(P)H dehydrogenase at different growth phases of the cyanobacterium, Synechocystis PCC6803.–Physiol. Plantarum 125: 135–140, 2005.CrossRefGoogle Scholar
  19. Ma W., Ogawa T., Shen Y., Mi H.: Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis sp. strain PCC 6803.–BBA-Bioenergetics 1767: 742–749, 2007.CrossRefPubMedGoogle Scholar
  20. Manodori A., Melis A.: Cyanobacterial acclimation to photosystem I or photosystem II light.–Plant Physiol. 82: 185–189, 1986.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Melis A., Mullineaux C.W., Allen J.F.: Acclimation of the photosynthetic apparatus to photosystem I or photosystem II light: evidence from quantum yield measurements and fluorescence spectroscopy of cyanobacterial cells.–Z. Naturforsch C 44: 109–118, 1989.CrossRefGoogle Scholar
  22. Mi H., Endo T., Ogawa T., Asada K.: Thylakoid membranebound, NADPH-specific pyridine nucleotide dehydrogenase complex mediated cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803.–Plant Cell Physiol. 36: 661–668, 1995.Google Scholar
  23. Mi H., Endo T., Schreiber U., Ogawa T. et al.: Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803.–Plant Cell Physiol. 33: 1233–1237, 1992.Google Scholar
  24. Moisander H.P., Beinart R.A., Hewson I. et al.: Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain.–Science 327: 1512–1514, 2010.CrossRefPubMedGoogle Scholar
  25. Myers J., Graham J.R., Wang R.T.: Light harvesting in Anacystis nidulans studied in pigment mutants.–Plant Physiol. 66: 1144–1149, 1980.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ogawa T.: A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803.–P. Natl. Acad. Sci. USA 88: 4275–4279, 1991.CrossRefGoogle Scholar
  27. Ohkawa H., Pakrasi H.B., Ogawa T.: Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803.–J. Biol. Chem. 275: 31630–31634, 2000.CrossRefPubMedGoogle Scholar
  28. Ohkawa H., Sonoda M., Hagino N. et al.: Functionally distinct NAD(P)H dehydrogenases and their membrane localization in Synechocystis sp. PCC6803.–Funct. Plant Biol. 29: 195–200, 2002.CrossRefGoogle Scholar
  29. Ohkawa H., Sonoda M., Shibata M., Ogawa T.: Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803.–J. Bacteriol. 183: 4938–4939, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shikanai T., Endo T., Hashimoto T. et al.: Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I.–P. Natl. Acad. Sci. USA 95: 9705–9709, 1998.CrossRefGoogle Scholar
  31. Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.–Plant Cell Physiol. 50: 684–697, 2009.CrossRefPubMedGoogle Scholar
  32. Wang R.T., Stevens C.L.R., Myers J.: Action spectra for photoreactions I and II of photosynthesis in the blue-green alga Anacystis nidulans.–Photochem. Photobiol. 25: 103–108, 19CrossRefGoogle Scholar
  33. Wang X., Gao F., Zhang J. et al: A cytoplasmic protein Ssl3829 is important for NDH-1 hydrophilic arm assembly in Synechocystis sp. strain PCC 6803.–Plant Physiol. 171: 864–877, 2016.PubMedPubMedCentralGoogle Scholar
  34. Xu M., Ogawa T., Pakrasi H.B., Mi H.: Identification and localization of the CupB protein involved in constitutive CO2 uptake in the cyanobacterium, Synechocystis sp. strain PCC 6803.–Plant Cell Physiol. 49: 994–997, 2008.CrossRefPubMedGoogle Scholar
  35. Zhang J., Gao F., Zhao J. et al.: NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803.–J. Biol. Chem. 289: 18770–18781, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang P., Battchikova N., Jansen T. et al.: Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803.–Plant Cell 16: 3326–3340, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhao J., Gao F., Zhang J. et al.: NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803.–J. Biol. Chem. 289: 26669–26676, 2014a.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhao J., Chen L., Gao F. et al.: Identification of biochemical association of phycobilisome with photosystems in cyanobacterial state transition.–Acta Bioch. Bioph. Sin. 46: 911–916, 2014b.CrossRefGoogle Scholar
  39. Zhao J., Rong W., Gao F. et al.: Subunit Q is required to stabilize the large complex of NADPH dehydrogenase in Synechocystis sp. strain PCC 6803.–Plant Physiol. 168: 443–451, 2015.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.College of Life and Environment SciencesShanghai Normal UniversityShanghaiChina
  2. 2.Bioscience CenterNagoya UniversityChikusa, NagoyaJapan

Personalised recommendations