Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand

Abstract

We report here the screening of sixteen cyanobacterial and three green algal strains from Thailand for their potential biohydrogen production. Five filamentous cyanobacterial species, namely Calothrix elenkinii, Fischerella muscicola, Nostoc calcicola, Scytonema bohneri, and Tolypothrix distorta, all possessing nitrogenase activity, showed potentially high biohydrogen production. These five strains showed higher hydrogen production in the absence than in the presence of nitrogen. In particular, F. muscicola had a 17-fold increased hydrogen production under combined nitrogen and sulfur deprived conditions. Among various sugars as a carbon source, glucose at 0.1% (w/v) gave the maximal hydrogen production of 10.9 μmol(H2) mg–1(Chl) h–1 in T. distorta grown in BG11 medium without nitrate. Increasing light intensity up to 250 μmol(photon) m–2 s–1 increased hydrogen production in F. muscicola and T. distorta. Overall results indicate that both F. muscicola and T. distorta have a high potential for hydrogen production amenable for further improvement by using molecular genetics technique.

This is a preview of subscription content, log in to check access.

Abbreviations

Chl:

chlorophyll

hox gene:

bidirectional hydrogenase gene

hup gene:

uptake hydrogenase gene

PCC:

Pasteur Culture Collection

TISTR:

Thailand Institute of Scientific and Technological Research

References

  1. Allahverdiyeva Y., Leino H., Saari L. et al.: Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes.–Int. J. Hydrogen Energ. 35: 1117–1127, 2010.

    Article  CAS  Google Scholar 

  2. Antal T.K., Lindblad P.: Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane at various extracellular pH.–J. Appl. Microbiol. 98: 114–120, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. Aoyama K., Uemura I., Miyake J. et al.: Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis.–J. Ferment. Bioeng. 83: 17–20, 1997.

    Article  CAS  Google Scholar 

  4. Baebprasert W., Lindblad P., Incharoensakdi A.: Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC6803.–Int. J. Hydrogen Energ. 35: 6611–6616, 2010.

    Article  CAS  Google Scholar 

  5. Berberoǧlu H., Jay J., Pilon L.: Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC29413.–Int. J. Hydrogen Energ. 33: 1172–1184, 2008.

    Article  CAS  Google Scholar 

  6. Bothe H., Schmitz O., Yates M.G. et al.: Nitrogen fixation and hydrogen metabolism in cyanobacteria.–Microbiol. Mol. Biol. Rev. 74: 529–551, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen P.C., Fan S.H., Chiang C.L. et al.: Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3.–Int. J. Hydrogen Energ. 33: 1460–1464, 20

    Article  CAS  Google Scholar 

  8. Dutta D., De D., Chaudhuri S., Bhattacharya S.K.: Hydrogen production by cyanobacteria.–Microb. Cell Fact. 4: 36, 2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fay P.: Oxygen relations of nitrogen fixation in cyanobacteria.–Microbiol. Rev. 56: 340–373, 1992.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Fouchard S., Hemschemeier A., Caruana A. et al.: Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells.–Appl. Environ. Microbiol. 71: 6199–6205, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gutekunst K., Chen Xi, Schreiber K. et al.: The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotropic nitrate-limiting conditions–J. Biol. Chem. 289: 1930–1937, 2014.

    Article  PubMed  CAS  Google Scholar 

  12. Hansel A., Lindblad P.: Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source.–Appl. Microbiol. Biot. 50: 153–160, 1998.

    Article  CAS  Google Scholar 

  13. Khetkorn W., Lindblad P., Incharoensakdi A.: Enhanced biohydrogen production by the N2-fixing cyanobacterium Anabaena siamensis strain TISTR 8012.–Int. J. Hydrogen Energ. 35: 12767–12776, 2010.

    Article  CAS  Google Scholar 

  14. Khetkorn W., Lindblad P., Incharoensakdi A.: Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012.–J. Biol. Eng. 6: 19, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Khetkorn W., Rastogi R.P., Incharoensakdi A. et al.: Microalgal hydrogen production–a review.–Bioresour. Technol. 243: 1194–1206, 2017.

    Article  CAS  Google Scholar 

  16. MacKinney G.: Absorption of light by chlorophyll solutions.–J. Biol.Chem. 140: 315–322, 1941.

    CAS  Google Scholar 

  17. Maneeruttanarungroj C., Lindblad P., Incharoensakdi A.: A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production.–Int. J. Hydrogen Energ. 35: 13193–13199, 2010.

    Article  CAS  Google Scholar 

  18. Masukawa H., Nakamura K., Mochimaru M. et al.: Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria.–Biohydrogen 2: 63–66, 2001.

    Article  Google Scholar 

  19. Masukawa H., Mochimaru M, Sakurai H.: Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. 7120.–Appl. Microbiol. Biot. 58: 618–624, 2002.

    Article  CAS  Google Scholar 

  20. Melis A., Zhang L.P., Forestier M. et al.: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii.–Plant Physiol. 122: 127–136, 20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Møller K.T., Jensen T.R., Akiba E. et al.: Hydrogen–A sustainable energy carrier.–Prog. Nat. Sci. 27: 34–40, 2017.

    Article  CAS  Google Scholar 

  22. Park J.I., Lee J., Sim S.J. et al.: Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora.–Biotechnol. Bioproc. E. 14: 307–315, 2009.

    Article  CAS  Google Scholar 

  23. Patel S., Madamwar D.: Photohydrogen production from a coupled system of Halobacterium halobium and Phormidium valderianum.–Int. J. Hydrogen Energ. 19: 733–738, 1994.

    Article  CAS  Google Scholar 

  24. Raksajit W., Satchasataporn K., Lehto K. et al: A. Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005.–Int. J. Hydrogen Energ. 37: 18791–18797, 2012.

    Article  CAS  Google Scholar 

  25. Reddy P.M., Spiller H., Albrecht S.L. et al.: Photodissimilation of fructose to H2 and CO2 by a dinitrogen fixing cyanobacterium, Anabaena variabilis.–Appl. Environ. Microb. 62: 1220–1226, 1996.

    CAS  Google Scholar 

  26. Stanier R.Y., Kunisawa R., Mandel M. et al.: Purification and properties of unicellular blue-green algae (order Chroococcales).–Bacteriol. Rev. 35: 171–205, 1971.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Tamagnini P., Axelsson R., Lindberg P. et al.: Hydrogenase and hydrogen metabolism of cyanobacteria.–Microbiol. Mol. Biol. Rev. 66: 1–20, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tamagnini P., Leitão E., Oliveira P. et al.: Cyanobacterial hydrogenase: diversity, regulation and applications.–FEMS Microbiol. Rev. 31: 692–720, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Tsygankov A.A., Kosourov S.N., Tolstygina I.V. et al.: Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions.–Int. J. Hydrogen Energ. 31: 1574–1584, 2006.

    Article  CAS  Google Scholar 

  30. Yeager C.M., Milliken C.E., Bagwell C.E. et al.: Evaluation of experimental conditions that influence hydrogen production among heterocystous cyanobacteria.–Int. J. Hydrogen Energ. 36: 7487–7499, 2011.

    Article  CAS  Google Scholar 

  31. Yoshino F., Ikeda H., Masukawa H. et al.: High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity.–J. Mar. Biotechnol. 9: 101–112, 2007.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Incharoensakdi.

Additional information

Acknowledgements: This work was supported by the Commission for Higher Education (CHE), Thailand (the university staff development consortium), the Frontier Research Project on Energy Cluster of Chulalongkorn University (CU-59-048-EN), and the Thailand Research Fund (IRG5780008) including the travel grant from CU Rachadapiseksompote Endowment Fund to AI. PY thanks Centre for International Mobility for CIMO scholarship, the Graduate School of Chulalongkorn University for Post-doctoral Fellowship. PY and WR thank Erasmus Mundus Action II scholarship (EXPERTS4Asia and EXPERTS-SUSTAIN).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yodsang, P., Raksajit, W., Aro, EM. et al. Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand. Photosynthetica 56, 334–341 (2018). https://doi.org/10.1007/s11099-018-0789-5

Download citation

Additional key words

  • culturing parameters
  • heterocyst
  • N2-fixing condition