, Volume 56, Issue 1, pp 404–410 | Cite as

Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: Role of cell wall hydrolases

  • B. Biswal
  • J. K. Pandey


Leaf senescence is always associated with decline in photosynthesis, consequently a loss of cellular sugar. On the other hand, execution of senescence program needs energy and leaves, therefore, tend to collect sugars from other sources to sustain energy homeostasis. This sugar reprogramming induced by loss of sugar involves operation of a complex catabolic network. The exact molecular mechanism of induction and regulation of the network, however, is not fully resolved but the current literature available suggests sugar starvation as a signal for induction of several senescence-associated genes including the genes coding for the enzymes for degradation of cellular constituents and their conversion to respiratory sugars. The late expression of genes coding for the cell wall hydrolases and enhancement in the activity of these enzymes late during senescence are indicative of the cell wall polysaccharides as the last source of sugars to sustain energy homeostasis for execution of the senescence program.

Additional key words

cell wall hydrolases photosynthesis senescence sugar homeostasis 



hexokinase 1


nonphotochemical quenching


photosynthesis-associated genes


senescence-associated genes


sucrose non-fermenting-1-related protein kinase 1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera-Alvarado G.P., Sánchez-Nieto S.: Plant hexokinases are multifaceted proteins.–Plant Cell Physiol. 58: 1151–1160, 2017.CrossRefPubMedGoogle Scholar
  2. Avila-Ospina L., Moison M., Yoshimoto K., Masclaux-Daubresse C.: Autophagy, plant senescence, and nutrient recycling.–J. Exp. Bot. 65: 3799–3811, 2014.CrossRefPubMedGoogle Scholar
  3. Baena-González E., Rolland F., Thevelein J.M., Sheen J.: A central integrator of transcription networks in plant stress and energy signalling.–Nature 448: 938–943, 2007.CrossRefPubMedGoogle Scholar
  4. Biswal B., Biswal U.C.: Leaf senescence: physiology and molecular biology.–Curr. Sci. India 77: 775–782, 1999.Google Scholar
  5. Biswal B., Joshi P.N., Raval M.K., Biswal U.C.: Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation.–Curr. Sci. India 101: 47–56, 2011.Google Scholar
  6. Biswal B., Mohapatra P.K., Raval M.K., Biswal U.C.: Photosynthetic regulation of senescence in green leaves: involvement of sugar signaling.–In: Itoh S., Mohanty P., Guruprasad K.N. (ed.): Photosynthesis: Overviews on Recent Progress and Future Prospectives. Pp. 245–260. IK International Publishing House, New Delhi 2012.Google Scholar
  7. Biswal B., Pandey J.K.: Development of chloroplast: biogenesis, senescence, and regulations.–In: Pessarakli M (ed.): Handbook of Photosynthesis, 3rd ed. Pp. 77–93. CRC Press, Boca Raton 2016.Google Scholar
  8. Biswal U.C., Basanti B., Raval M.K.: Chloroplast Biogenesis: from Proplastid to Gerontoplast. Pp. 353. Kluwer Academic Publishers, Dordrecht 2003.CrossRefGoogle Scholar
  9. Breeze E., Harrison E., McHattie S. et al.: High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation.–Plant Cell 23: 873–894, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brummell D.A., Dal Cin V., Crisosto C.H., Labavitch J.M.: Cell wall metabolism during maturation, ripening and senescence of peach fruit.–J. Exp. Bot. 55: 2029–2039, 2004.CrossRefPubMedGoogle Scholar
  11. Buchanan-Wollaston V., Page T., Harrison E. et al.: Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis.–Plant J. 42: 567–585, 20CrossRefPubMedGoogle Scholar
  12. Carrión C.A., Martínez D.E., Costa M.L., Guiamet J.J.: Senescence-associated vacuoles, a specific lytic compartment for degradation of chloroplast proteins?–Plants 3: 498–512, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chrost B., Daniel A., Krupinska K.: Regulation of α-galactosidase gene expression in primary foliage leaves of barley (Hordeum vulgare L.) during dark-induced senescence.–Planta 218: 886–889, 2004.CrossRefPubMedGoogle Scholar
  14. Costa M.L., Martínez D.E., Gomez F.M. et al.: Chloroplast protein degradation: involvement of senescence-associated vacuoles.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 417–433. Springer, Dordrecht 2013.CrossRefGoogle Scholar
  15. Fischer A.M.: The complex regulation of senescence.–Crit. Rev. Plant Sci. 31: 124–147, 2012.CrossRefGoogle Scholar
  16. Franková L., Fry S.C.: Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides.–J. Exp. Bot. 64: 3519–3550, 2013.CrossRefPubMedGoogle Scholar
  17. Fujiki Y., Nakagawa Y., Furumoto T. et al.: Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulinantagonist-sensitive signalling in Arabidopsis thaliana.–Plant Cell Physiol. 46: 1741–1746, 20CrossRefPubMedGoogle Scholar
  18. Fujiki Y., Yoshikawa Y., Sato T. et al.: Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars.–Physiol. Plantarum 111: 345–352, 2001.CrossRefGoogle Scholar
  19. Gepstein S., Sabehi G., Carp M.-J. et al.: Large-scale identification of leaf senescence-associated genes.–Plant J. 36: 629–642, 2003.CrossRefPubMedGoogle Scholar
  20. Gregersen P.L., Foyer C.H., Krupinska K.: Photosynthesis and leaf senescence as determinants of plant productivity.–In: Kumlehn J., Stein N. (ed.): Biotechnological Approaches to Barley Improvement. Pp. 113–138. Springer, Berlin–Heidelberg 2014.Google Scholar
  21. Gunawardena A.H., Greenwood J.S., Dengler N.G.: Cell wall degradation and modification during programmed cell death in lace plant, Aponogeton madagascariensis (Aponogetonaceae).–Am. J. Bot. 94: 1116–1128, 2007.CrossRefPubMedGoogle Scholar
  22. Guo Y., Gan S.-S.: Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments.–Plant Cell Environ. 35: 644–655, 2012.CrossRefPubMedGoogle Scholar
  23. Havé M., Marmagne A., Chardon F., Masclaux-Daubresse C.: Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops.–J. Exp. Bot. 68: 2513–2529, 2017.PubMedGoogle Scholar
  24. Hörtensteiner S., Feller U.: Nitrogen metabolism and remobilization during senescence.–J. Exp. Bot. 53: 927–937, 2002.CrossRefPubMedGoogle Scholar
  25. Jamar C., du Jardin P., Fauconnier M.-L.: Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.): a review.–Biotechnol. Agron. Soc. 15: 301–313, 2011.Google Scholar
  26. Joshi P., Nayak L., Misra A.N., Biswal B.: Response of mature, developing and senescing chloroplasts to environmental stress.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 641–668. Springer, Dordrecht 2013.CrossRefGoogle Scholar
  27. Kabbage M., Kessens R., Bartholomay L.C., Williams B.: The life and death of a plant cell.–Annu. Rev. Plant Biol. 68: 375–404, 2017.CrossRefPubMedGoogle Scholar
  28. Kim J., Woo H.R., Nam H.G.: Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research.–Mol. Plant. 9: 813–825, 2016.CrossRefPubMedGoogle Scholar
  29. Lee E.-J., Koizumi N., Sano H.: Identification of genes that are up-regulated in concert during sugar depletion in Arabidopsis.–Plant Cell Environ. 27: 337–345, 20CrossRefGoogle Scholar
  30. Lee E.-J., Matsumura Y., Soga K. et al.: Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis.–Plant Cell Physiol. 48: 405–413, 20CrossRefPubMedGoogle Scholar
  31. Li L., Sheen J.: Dynamic and diverse sugar signaling.–Curr. Opin. Plant Biol. 33: 116–125, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li Z., Zhao Y., Liu X. et al: LSD 2.0: an update of the leaf senescence database.–Nucleic Acids Res. 42: D1200–D1205, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lichtenthaler H.K.: Plastoglobuli, thylakoids, chloroplast structure and development of plastids.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 337–361. Springer, Dordrecht 2013.CrossRefGoogle Scholar
  34. Lim P.O., Kim H.J., Nam H.G.: Leaf senescence.–Annu. Rev. Plant Biol. 58: 115–136, 2007.CrossRefPubMedGoogle Scholar
  35. Liu X., Li Z., Jiang Z. et al.: LSD: a leaf senescence database.–Nucleic Acids Res. 39: D1103–D1107, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Minic Z.: Physiological roles of plant glycoside hydrolases.–Planta 227: 723–740, 2008.CrossRefPubMedGoogle Scholar
  37. Mohapatra P.K., Patro L., Raval M.K. et al.: Senescence-induced loss in photosynthesis enhances cell wall β-glucosidase activity.–Physiol. Plantarum 138: 346–355, 2010.CrossRefGoogle Scholar
  38. Moreira L.R.S., Milanezi N.G., Filho E.X.F.: Enzymology of plant cell wall breakdown: an update.–In: Buckeridge M.S., Goldman G.H. (ed.): Routes to Cellulosic Ethanol. Pp. 73–96. Springer, New York 2011.Google Scholar
  39. Ohsumi Y.: Historical landmarks of autophagy research.–Cell Res. 24: 9–23, 2014.CrossRefPubMedGoogle Scholar
  40. Ono Y., Wada S., Izumi M. et al.: Evidence for contribution of autophagy to rubisco degradation during leaf senescence in Arabidopsis thaliana.–Plant Cell Environ. 36: 1147–1159, 20CrossRefPubMedGoogle Scholar
  41. Pandey J.K., Dash S.K., Biswal B.: Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress.–Protoplasma 254: 1651–1659, 2017a.CrossRefPubMedGoogle Scholar
  42. Pandey J.K., Dash S.K., Biswal B.: Nitrogen-deficiency-induced loss in photosynthesis and modulation of β-galactosidase activity during senescence of Arabidopsis leaves.–Acta Physiol. Plant. 39: 75, 2017b.CrossRefGoogle Scholar
  43. Patro L.: Water stress induced alterations in photosynthesis and activity of enzyme(s) associated with the breakdown of cell wall polysaccharides.–PhD Thesis, Sambalpur University, India 2012.Google Scholar
  44. Patro L., Mohapatra P.K., Biswal U.C., Biswal B.: Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.–J. Photoch. Photobio. B 137: 49–54. 2014.CrossRefGoogle Scholar
  45. Pourtau N., Jennings R., Pelzer E. et al.: Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis.–Planta 224: 556–568, 20CrossRefPubMedGoogle Scholar
  46. Pourtau N., Marès M., Purdy S. et al.: Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence.–Planta 219: 765–772, 2004.CrossRefPubMedGoogle Scholar
  47. Quirino B.F., Noh Y.-S., Himelblau E., Amasino R.M.: Molecular aspects of leaf senescence.–Trends Plant Sci. 5: 278–282, 2000.CrossRefPubMedGoogle Scholar
  48. Rolland F., Baena-Gonzalez E., Sheen J.: Sugar sensing and signaling in plants: conserved and novel mechanisms.–Annu. Rev. Plant Biol. 57: 675–709, 2006.CrossRefPubMedGoogle Scholar
  49. Sabater B., Martín M.: Chloroplast control of leaf senescence.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 529–550. Springer, Dordrecht 2013.CrossRefGoogle Scholar
  50. Sarwat M.: Leaf senescence in plants: nutrient remobilization and gene regulation.–In: Sarwat M., Ahmad A., Abdin M.Z., Ibrahim M.M. (ed.): Stress Signaling in Plants: Genomics and Proteomics Perspective, Vol. 2. Pp. 301–316. Springer International Publishing, Cham 2017.Google Scholar
  51. Schippers J.H.M.: Transcriptional networks in leaf senescence.–Curr. Opin. Plant Biol. 27: 77–83, 2015.CrossRefPubMedGoogle Scholar
  52. Tonini P.P., Lisboa C.G.S., Silva C.O. et al.: Testa is involved in the control of storage mobilisation in seeds of Sesbania virgata (Cav.) Pers., a tropical legume tree from of the Atlantic Forest.–Trees 21: 13–21, 2007.CrossRefGoogle Scholar
  53. van Doorn W.G.: Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels?–J. Exp. Bot. 59: 1963–1972, 2008.CrossRefPubMedGoogle Scholar
  54. Wingler A., Purdy S., MacLean J.A., Pourtau N.: The role of sugars in integrating environmental signals during the regulation of leaf senescence.–J. Exp. Bot. 57: 391–399, 2006.CrossRefPubMedGoogle Scholar
  55. Wingler A., Roitsch T.: Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses.–Plant Biol. 10: 50–62, 2008.CrossRefPubMedGoogle Scholar
  56. Wolf S., Hématy K., Höfte H.: Growth control and cell wall signaling in plants.–Annu. Rev. Plant Biol. 63: 381–407, 2012.CrossRefPubMedGoogle Scholar
  57. Xie Q., Michaeli S., Peled-Zehavi H., Galili G.: Chloroplast degradation: one organelle, multiple degradation pathways.–Trends Plant Sci. 20: 264–265, 2015.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Laboratory of Biochemistry and Molecular Biology, School of Life SciencesSambalpur UniversityJyoti Vihar, Burla, OdishaIndia

Personalised recommendations