Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 67–74 | Cite as

Synthesis and characterization of a cobalt(II) tetrakis(3-fluorophenyl) porphyrin with a built-in 4-vinylphenyl surface attachment moiety

  • D. Khusnutdinova
  • M. Flores
  • A. M. Beiler
  • G. F. Moore
Article

Abstract

Metalloporphyrins serve important roles in biology and as components in emerging technological assemblies for energy conversion. In this report, we describe the synthesis and characterization of a novel cobalt(II) 5,10,15,20-tetrakis (3-fluorophenyl)porphyrin bearing a 4-vinylphenyl surface attachment group at a beta position on the macrocycle. Electrochemical measurements show the 3-fluorophenyl groups at the meso positions of the porphyrin perturb the reduction potentials of the complex to more positive values as compared to non-fluorinated analogs, thus allowing access to reduced cobalt porphyrin species at significantly less negative applied bias potentials. The complex, cobalt(II) 5,10,15,20-tetrakis(3-fluorophenyl)-2-(4-vinylphenyl)porphyrin, is abbreviated in this article as Gov-1 in honor of Govindjee for his pioneering investigations in the role of fluorine as a promoter of novel protein-substrate interactions and the inspirational role he continues to have in encouraging young investigators in the areas of natural and artificial photosynthesis.

Additional key words

artificial photosynthesis fluorine porphyrins surface chemistry 

Abbreviations

DDQ

2,3-dichloro-5,6-dicyano-1,4-benzoquinone

EPR

electron paramagnetic resonance

Fc+/Fc

ferrocenium/ferrocene

FTIR

Fourier transform infrared

gCOSY

gradient correlation spectroscopy

Gov-1

cobalt(II) 5,10,15,20-tetrakis(3- fluorophenyl)-2-(4-vinylphenyl)porphyrin

m/z

abbreviation representing the dimensionless quantity formed by dividing the ratio of the mass of an ion to the unified atomic mass unit, by its charge number

MALDI-TOF MS

matrix assisted laser desorption/ ionization time-of-flight mass spectrometer

NBS

N-bromosuccinamide

NMR

nuclear magnetic resonance

SCE

standard calomel reference electrode

UV-Vis

ultraviolet-visible

4-VPBA

4-vinylphenyl boronic acid

δ

chemical shift

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler A.D., Longo F.R., Finarelli J.D. et al: A simplified synthesis for meso-tetraphenylporphyrin.–J. Org. Chem. 32: 476, 1966.CrossRefGoogle Scholar
  2. Alben J.O., Choi S.S., Adler A.D. et al.: Infrared spectroscopy of porphyrins.–Ann. NY Acad. Sci. 206: 278–295, 1973.CrossRefPubMedGoogle Scholar
  3. Bard A.J., Fox M.A.: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen.–Acc. Chem. Res. 28: 141–145, 1995.CrossRefGoogle Scholar
  4. Behar D., Dhanasekaran T., Neta P et al.: Cobalt porphyrin catalyzed reduction of CO2 radiation chemical, photochemical, and electrochemical studies.–J. Phys. Chem. A 102: 2870–2877, 1998.CrossRefGoogle Scholar
  5. Beiler A.M., Khusnutdinova D., Jacob S.I. et al.: Solar hydrogen production using molecular catalysts immobilized on gallium phosphide (111)A and (111)B polymer–modified photocathodes.–ACS Appl. Mater. Interfaces 8: 10038–10047, 2016a.CrossRefPubMedGoogle Scholar
  6. Beiler A.M., Khusnutdinova D., Jacob S.I. et al.: Chemistry at the interface: polymer-functionalized GaP semiconductors for solar hydrogen production.–Ind. Eng. Chem. Res. 55: 5306–5314, 2016b.CrossRefGoogle Scholar
  7. Beiler A.M., Khusnutdinova D., Wadsworth B.L. et al.: Cobalt porphyrin-polypyridyl surface coatings for photoelectrosynthetic hydrogen production.–Inorg. Chem. 56: 12178–12185, 2017.CrossRefPubMedGoogle Scholar
  8. Berben L.A., Peters J.C.: Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces.–Chem. Commun. 46: 398–400, 2010.CrossRefGoogle Scholar
  9. Boucher L.J., Katz J.J.: The infared spectra of metalloporphyrins (4000–160 [cm–1]).–J. Am. Chem. Soc. 89: 1340–1345, 1967.CrossRefPubMedGoogle Scholar
  10. Blankenship R.E., Tiede D.M., Barber J. et al.: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement.–Science 332: 805–809, 2011.CrossRefPubMedGoogle Scholar
  11. Cedeno D., Krawicz A., Doak P. et al.: Using molecular design to control the performance of hydrogen producing polymerbrush-modified photocathodes.–J. Phys. Chem. Lett. 5: 3222–3226, 2014.CrossRefPubMedGoogle Scholar
  12. Cedeno D., Krawicz A., Moore G.F.: Hybrid photocathodes for solar fuel production: coupling molecular fuel-production catalysts with solid-state light harvesting and conversion technologies.–Interface Focus 5: 20140085, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chambers R.D.: Fluorine in Organic Chemistry. Pp. 384. Blackwell Publishing Ltd. Oxford 2004.CrossRefGoogle Scholar
  14. Chapman R.D., Fleischer E.B.: Direct measurement of electron self-exchange rates of cobalt porphyrins. 1. Outer-sphere exchange.–J. Am. Chem. Soc. 104: 1575–1582, 1982.CrossRefGoogle Scholar
  15. Cicero R.L., Linford M.R., Chidsey C.E.D.: Photoreactivity of unsaturated compounds with hydrogen-terminated silicon (111).–Langmuir 16: 5688–5695, 2000.CrossRefGoogle Scholar
  16. Dalvit C., Vulpetti A.: Fluorine–protein interactions and 19F NMR isotopic chemical shifts: an empirical correlation with implication for drug design.–Chem. Med. Chem. 6: 104–114, 2011.CrossRefPubMedGoogle Scholar
  17. Dhanasekaran T., Grodkowski J., Neta P. et al.: p-terphenylsensitized photoreduction of CO2 with cobalt and iron porphyrins. Interaction between CO and reduced metalloporphyrins.–J. Phys. Chem. A 103: 7742–7748, 1999.CrossRefGoogle Scholar
  18. Faunce T.A., Lubitz W., Rutherford A.W. et al.: Energy and environment policy case for a global project on artificial photosynthesis.–Energy Environ. Sci. 6: 695–698, 2013a.CrossRefGoogle Scholar
  19. Faunce T.A., Styring S., Wasiełewski M.R. et al.: Artificial photosynthesis as a frontier technology for energy sustainability.–Energy Environ. Sci. 6: 1074–1076, 2013b.CrossRefGoogle Scholar
  20. Flores M., Isaacson R., Abresch E. et al.: Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone QA.–by 1H and 2H ENDOR spectroscopy.–Biophys. J. 92: 671–682, 2007.CrossRefPubMedGoogle Scholar
  21. Gerig J.T.: Fluorine magnetic resonance in biochemistry.–In: Berliner L.J., Reuben J. (ed.): Biological Magnetic Resonance (A Series of Contemporary Topics and Reviews), Vol. 1. Pp. 139–203, Springer, New York 1978.Google Scholar
  22. Gobi K.V., Tokuda K., Ohsaka T.: Electrochemical and spectroscopic studies on nickel(II/III) complexes with novel 14-membered hexaaza macrocycle functionalized with propenyl groups.–Electrochim. Acta 43: 1013–1022, 1998.CrossRefGoogle Scholar
  23. Govindjee: Celebrating Andrew Alm Benson’s 93rd birthday.–Photosynth. Res. 105: 201–208, 2010.CrossRefPubMedGoogle Scholar
  24. Govindjee: Young research investigators honored at the 2008 and 2009 Gordon research conferences on photosynthesis: ambiance and a personal perspective.–Photosynth. Res. 102: 1–6, 2009.CrossRefPubMedGoogle Scholar
  25. Govindjee, Ananyev G.M., Savikhin S.: Young research investigators honored at the 2011 Gordon research conference on photosynthesis: ambiance and a perspective.–Photosynth. Res. 110: 143–149, 2011.CrossRefPubMedGoogle Scholar
  26. Govindjee, Rutherford A.W., Britt R.D.: Four young research investigators were honored at the 2006 Gordon research conference on photosynthesis.–Photosynth. Res. 92: 137–138, 2007.CrossRefGoogle Scholar
  27. Govindjee, Šesták Z., Peters W.R.: The early history of “Photosynthetica”, “Photosynthesis Research”, and their publishers.–Photosynthetica 40: 1–11, 2002.CrossRefGoogle Scholar
  28. Govindjee, Telfer A.: Six young research investigators were honored at an international conference in Russia.–Photosynth. Res. 92: 139–141, 2007.CrossRefGoogle Scholar
  29. Hou H.J.M., Najafpour M.M., Moore G.F. et al.: Photosynthesis: Structures, Mechanisms, and Applications. Pp. 321–358. Springer, New York 2017.CrossRefGoogle Scholar
  30. Kadish K.M., Caemelbecke E.V.: Electrochemistry of porphyrins and related macrocycles.–J. Solid State Electrochem. 7: 254–258, 2003.CrossRefGoogle Scholar
  31. Khusnutdinova D., Beiler A.M., Wadsworth B.L. et al.: Metalloporphyrin-modified semiconductor for solar fuel production.–Chem. Sci. 8: 253–259, 2017.CrossRefPubMedGoogle Scholar
  32. Kim C.-Y., Chang J.S., Doyon J.B. et al.: Contribution of fluorine to protein–ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II.–J. Am. Chem. Soc. 122: 12125–12134, 2000.CrossRefGoogle Scholar
  33. Kincaid J., Nakamoto K.: Vibrational spectra of transition metal complexes of tetraphenylporphine.–J. Inorg. Nucl. Chem. 37: 85–89, 1975.CrossRefGoogle Scholar
  34. Li B., Franking R., Landis E.C. et al.: Photochemical grafting and patterning of biomolecular layers onto TiO2 thin films.–ACS Appl. Mater. Interfaces. 1: 1013–1022, 2009.CrossRefPubMedGoogle Scholar
  35. Luca O.R., Crabtree R.H.: Redox-active ligands in catalysis.–Chem. Soc. Rev. 42: 1440–1459, 2013.CrossRefPubMedGoogle Scholar
  36. Lyaskovskyy V., de Bruin B.: Redox non-innocent ligands: versatile new tools to control catalytic reactions.–ACS Catal. 2: 270–279, 2012.CrossRefGoogle Scholar
  37. Maher A.G., Passard G., Dogutan D.K. et al.: Hydrogen evolution catalysis by a sparsely substituted cobalt chlorin.–ACS Catal. 7: 3597–3606, 2017.CrossRefGoogle Scholar
  38. Moore G.F.: Concluding remarks and future perspectives: looking back and moving forward. Pp. 407–414. Springer, New York 2017.Google Scholar
  39. Moore G.F., Ananyev G.M., Govindjee: Young research investigators honored at the 2012 Gordon Research Conference on Photosynthesis–Photosynth. Res. 114: 137–142, 2012a.CrossRefPubMedGoogle Scholar
  40. Moore G.F., Hambourger M., Gervaldo M. et al: A bioinspired construct that mimics the proton coupled electron transfer between P680*+ and the Tyrz-His 190 pair of photosystem II.–J. Am. Chem. Soc. 130: 10466–10467, 2008.CrossRefPubMedGoogle Scholar
  41. Moore G.F., Konezny S.J., Song H. et al.: Bioinspired highpotential porphyrin photoanodes.–J. Phys. Chem. C 116: 4892–4902, 2012b.CrossRefGoogle Scholar
  42. Moore G.F., Sharp I.D.: A noble-metal-free hydrogen evolution catalyst grafted to visible light-absorbing semiconductors.–J. Phys. Chem. Lett. 4: 568–572, 2013.CrossRefPubMedGoogle Scholar
  43. Najafpour M.M., Shen J-R., Barber J. et al.: Running on sun.–Chem. World November: 43, 2012.Google Scholar
  44. Nguyen K., Day P.N., Pachter R.: Effects of halogenation on the ionized and excited states of free-base and zinc porphyrins.–J. Chem. Phys. 110: 9135–9144, 1999.CrossRefGoogle Scholar
  45. O’Hagan D., Rzepa H. S.: Some influences of fluorine in bioorganic chemistry.–Chem. Commun. 7: 645–652, 1997.CrossRefGoogle Scholar
  46. Rappaport F., Malnoë A., Govindjee: Gordon research conference on photosynthesis: from evolution of fundamental mechanisms to radical re-engineering.–Photosynth. Res. 123: 213–223, 2015.CrossRefPubMedGoogle Scholar
  47. Richards D., Zemlyanov D., Ivanisevic A.: Assessmnet of the passivation capabilities of two different covalent chemical modifications on GaP(100).–Langmuir 26: 8141–8146, 2010.CrossRefPubMedGoogle Scholar
  48. Rose M.J., Gray H.B., Winkler J.R.: Hydrogen generation catalyzed by fluorinated diglyoxime-iron complexes at low overpotentials.–J. Am. Chem. Soc. 134: 8310–8313, 2012.CrossRefPubMedGoogle Scholar
  49. Rosenthal J., Luckett T.D., Hodgkiss J.M. et al.: Photocatalytic oxidation of hydrocarbons by a bis-iron(III)-μ-oxo pacman porphyrin using O2 and visible light.–J. Am. Chem. Soc. 128: 6546–6547, 2006.CrossRefPubMedGoogle Scholar
  50. Seifert M., Koch A.H.R., Deubel F. et al.: Functional polymer brushes on hydrogenated graphene.–Chem. Mater. 25: 466–470, 2013.CrossRefGoogle Scholar
  51. Słota R., Broda M.A., Dyrda G. et al.: Structural and molecular characterization of meso-substituted zinc porphyrins: a DFT supported study.–Molecules 16: 9957–9971, 2011.CrossRefPubMedGoogle Scholar
  52. Steenackers M., Gigler A.M., Zhang N. et al.: Polymer brushes on graphene.–J. Am. Chem. Soc. 133: 10490–10498, 2011.CrossRefPubMedGoogle Scholar
  53. Stoll, S., Schweiger, A.: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR.–J. Magn. Reson. 178: 42–55, 2006.CrossRefPubMedGoogle Scholar
  54. Sun H., Smirnov V., DiMagno S.G.: Slow electron transfer rates for fluorinated cobalt porphyrins: electronic and conformational factors modulating metalloporphyrin ET.–Inorg. Chem. 42: 6032–6040, 2003.CrossRefPubMedGoogle Scholar
  55. Sykes B.D., Hull W.E., Snyder G.H.: Experimental evidence for role of cross-relaxation in proton nuclear magnetic resonance spin lattice relaxation time measurements in proteins.–Biophys. J. 21: 137–146, 1978.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tierno M.E., Mead D., Asato A.E. et al.: 14-fluorobacteriorhodopsin and other fluorinated and 14-substituted analogues. An extra, unusually red-shifted pigment formed during dark adaptation.–Biochemistry 29: 5948–5953, 1990.CrossRefPubMedGoogle Scholar
  57. Toi H., Homma M., Suzuki A. et al.: Paramagnetic 19F N.M.R. spectra of iron(III) porphyrins substituted with CF3 groups and reconstituted myoglobin.–J. Chem. Soc. Chem. Comm. 24: 1791–1792, 1985.CrossRefGoogle Scholar
  58. Tomkowicz Z., Rams M., Bałanda M. et al.: Slow magnetic relaxations in manganese(III) tetra(meta-fluorophenyl)-porphyrin-tetracyanoethenide. Composition with the relative single chain magnet ortho compound.–Inorg. Chem. 51: 9983–9994, 2012.CrossRefPubMedGoogle Scholar
  59. Wadsworth B.L., Beiler A.M., Khusnutdinova D. et al.: Electrocatalytic and optical properties of cobaloxime catalysts immobilized at a surface-grafted polymer interface.–ACS Catal. 6: 8048–8057, 2016.CrossRefGoogle Scholar
  60. Yolder N.C., Kumar K.: Fluorinated amino acids in protein design and engineering.–Chem. Soc. Rev. 31: 335–341, 2002.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • D. Khusnutdinova
    • 1
  • M. Flores
    • 1
  • A. M. Beiler
    • 1
  • G. F. Moore
    • 1
  1. 1.School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD)Arizona State UniversityTempeUSA

Personalised recommendations