, Volume 56, Issue 1, pp 265–274 | Cite as

The phycobilisome terminal emitter transfers its energy with a rate of (20 ps)–1 to photosystem II

  • A. M. Acuña
  • P. Van Alphen
  • R. Van Grondelle
  • I. H. M. Van Stokkum
Open Access


Ultrafast time resolved emission spectra were measured in whole cells of a PSI-deficient mutant of Synechocystis sp. PCC 6803 at room temperature and at 77K to study excitation energy transfer and trapping. By means of a target analysis it was estimated that the terminal emitter of the phycobilisome, termed allophycocyanin 680, transfers its energy with a rate of (20 ps)–1 to PSII. This is faster than the intraphycobilisome energy transfer rates between a rod and a core cylinder, or between the core cylinders.

Additional key words

excitation energy transfer global analysis light harvesting target analysis 





decay-associated spectrum


PSI-deficient mutant of Synechocystis sp. PCC 6803


evolution-associated spectrum


electron transfer


excitation energy transfer


full width at half maximum


instrument response function






root mean square


radical pair


species-associated spectrum


signal to noise ratio


steady-state spectra


singular value decomposition


time resolved emission spectrum


wild type

Supplementary material

11099_2018_779_MOESM1_ESM.pdf (333 kb)
Supplementary material, approximately 332 KB.
11099_2018_779_MOESM2_ESM.pdf (215 kb)
Supplementary material, approximately 215 KB.
11099_2018_779_MOESM3_ESM.pdf (314 kb)
Supplementary material, approximately 313 KB.
11099_2018_779_MOESM4_ESM.pdf (363 kb)
Supplementary material, approximately 363 KB.
11099_2018_779_MOESM5_ESM.pdf (218 kb)
Supplementary material, approximately 217 KB.
11099_2018_779_MOESM6_ESM.pdf (306 kb)
Supplementary material, approximately 306 KB.
11099_2018_779_MOESM7_ESM.pdf (353 kb)
Supplementary material, approximately 353 KB.
11099_2018_779_MOESM8_ESM.pdf (134 kb)
Supplementary material, approximately 133 KB.
11099_2018_779_MOESM9_ESM.pdf (162 kb)
Supplementary material, approximately 162 KB.


  1. Acuña A.M., Kaňa R., Gwizdala M. et al: A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions.–Photosynth. Res. 130: 237–249, 2016a.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Acuña A.M., Snellenburg J.J., Gwizdala M. et al.: Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.–Photosynth. Res. 127: 91–102, 2016b.CrossRefPubMedGoogle Scholar
  3. Adir N.: Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant.–Photosynth. Res. 85: 15–32, 2005.CrossRefPubMedGoogle Scholar
  4. Arteni A.A., Ajlani G., Boekema E.J.: Structural organisation of phycobilisomes from Synechocystis sp strain PCC6803 and their interaction with the membrane.–Biochim. Biophys. Acta 1787: 272–279, 2009.CrossRefPubMedGoogle Scholar
  5. Gillbro T., Sandstrom A., Sundstrom V. et al.: Picosecond study of energy-transfer kinetics in phycobilisomes of Synechococcus 6301 and the mutant AN 112.–Biochim. Biophys. Acta 808: 52–65, 1985.CrossRefGoogle Scholar
  6. Glazer A.N.: Phycobilisome - a macromolecular complex optimized for light energy-transfer.–Biochim. Biophys. Acta 768: 29–51, 1984.CrossRefGoogle Scholar
  7. Govindjee, Shevela D., Björn L.O.: Evolution of the Z-scheme of photosynthesis: a perspective.–Photosynth. Res. 133: 5–15, 2017.CrossRefPubMedGoogle Scholar
  8. Holzwarth A.R.: Data analysis of time-resolved measurements.–In: Amesz J., Hoff A.J. (ed.): Biophysical Techniques in Photosynthesis. Pp. 75–92. Kluwer, Dordrecht 1996.Google Scholar
  9. Jallet D., Gwizdala M., Kirilovsky D.: ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803.–Biochim. Biophys. Acta 1817: 1418–1427, 2012.CrossRefPubMedGoogle Scholar
  10. Liu H., Zhang H., Niedzwiedzki D.M. et al.: Phycobilisomes Supply excitations to both photosystems in a megacomplex in cyanobacteria.–Science 342: 1104–1107, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Maksimov E.G., Kuzminov F.I., Konyuhov I.V. et al.: Photosystem 2 effective fluorescence cross-section of cyanobacterium Synechocystis sp. PCC6803 and its mutants.–J. Photoch. Photobio. B 104: 285–291, 2011.CrossRefGoogle Scholar
  12. Mirkovic T., Ostroumov E.E., Anna J.M. et al.: Light absorption and energy transfer in the antenna complexes of photosynthetic organisms.–Chem. Rev. 117: 249–293, 2017.CrossRefPubMedGoogle Scholar
  13. Sandström A., Gillbro T., Sundström V. et al.: Picosecond study of energy-transfer within 18-S particles of AN-112 (a mutant of Synechococcus 6301) phycobilisomes.–BBABioenergetics 933: 54–64, 1988.CrossRefGoogle Scholar
  14. Scott M., McCollum C., Vasil’ev S. et al.: Mechanism of the down regulation of photosynthesis by blue light in the cyanobacterium Synechocystis sp PCC 6803.–Biochemistry 45: 8952–8958, 2006.CrossRefPubMedGoogle Scholar
  15. Shen G., Boussiba S., Vermaas W.F.: Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function.–Plant Cell 5: 1853–1863, 1993.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Snellenburg J.J., Dekker J.P., van Grondelle R. et al.: Functional compartmental modeling of the photosystems in the thylakoid membrane at 77 K.–J. Phys. Chem. B 117: 11363–11371, 2013.CrossRefPubMedGoogle Scholar
  17. Snellenburg J.J., Wlodarczyk L.M., Dekker J.P. et al: A model for the 77 K excited state dynamics in Chlamydomonas reinhardtii in state 1 and state 2.–Biochim. Biophys. Acta 1858: 64–72, 2017.CrossRefPubMedGoogle Scholar
  18. Tian L., Farooq S., van Amerongen H.: Probing the picosecond kinetics of the photosystem II core complex in vivo.–Phys. Chem. Chem. Phys. 15: 3146–3154, 201CrossRefPubMedGoogle Scholar
  19. Tian L., Gwizdala M., van Stokkum I.H.M. et al.: Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803.–Biophys. J. 102:1692–1700, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Tian L., van Stokkum I.H.M., Koehorst R.B.M. et al.: Site, rate, and mechanism of photoprotective quenching in cyanobacteria.–J. Am. Chem. Soc. 133: 18304–18311, 2011.CrossRefPubMedGoogle Scholar
  21. Tian L., van Stokkum I.H.M., Koehorst R.B.M. et al.: Light harvesting and blue-green light induced non-photochemical quenching in two different c-phycocyanin mutants of Synechocystis PCC 6803.–J. Phys. Chem. B 117: 11000–11006, 2013b.CrossRefPubMedGoogle Scholar
  22. van Grondelle R., Dekker J.P., Gillbro T. et al.: Energy transfer and trapping in photosynthesis.–BBA-Bioenergetics 1187: 1–65, 1994.CrossRefGoogle Scholar
  23. van Stokkum I.H.M., Gwizdala M., Tian L. et al.: A functional compartmental model of the Synechocystis PCC 6803 phycobilisome.–DOI: 10.1007/s11120-017-0424-5, 2017.Google Scholar
  24. van Stokkum I.H.M., Larsen D.S., van Grondelle R.: Global and target analysis of time-resolved spectra.–BBA-Bioenergetics 1657: 82–104, 2004.CrossRefPubMedGoogle Scholar
  25. van Stokkum I.H.M., van Oort B., van Mourik F. et al.: (Sub)-Picosecond spectral evolution of fluorescence studied with a synchroscan streak-camera system and target analysis.–In: Aartsma T.J., Matysik J. (ed.): Biophysical Techniques in Photosynthesis. Pp. 223–240. Springer, Dordrecht 2008.CrossRefGoogle Scholar
  26. Watanabe M., Ikeuchi M.: Phycobilisome: architecture of a lightharvesting supercomplex.–Photosynth. Res. 116: 265–276, 2013.CrossRefPubMedGoogle Scholar
  27. Wlodarczyk L.M., Dinc E., Croce R. et al.: Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions.–Biochim. Biophys. Acta 1857: 625–633, 2016.CrossRefPubMedGoogle Scholar
  28. Xie J., Zhao J.-Q., Peng C.: Analysis of the disk-to-disk energy transfer processes in C-phycocyanin complexes by computer simulation technique.–Photosynthetica 40: 251–257, 2002CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • A. M. Acuña
    • 1
  • P. Van Alphen
    • 2
  • R. Van Grondelle
    • 1
  • I. H. M. Van Stokkum
    • 1
  1. 1.Institute for Lasers, Life and Biophotonics, Faculty of SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations