Characterization of isolated photosystem I from Halomicronema hongdechloris, a chlorophyll f-producing cyanobacterium

Abstract

Halomicronema hongdechloris is a chlorophyll (Chl) f-producing cyanobacterium. Chl f biosynthesis is induced under far-red light, extending its photosynthetically active radiation range to 760 nm. In this study, PSI complexes were isolated and purified from H. hongdechloris, grown under white light (WL) and far-red light (FR), by a combination of density gradient ultracentrifugation and chromatographic separation. WL-PSI showed similar pigment composition as that of Synechocystis 6803, using Chl a in the reaction center. Both Chl a and f were detected in the FR-PSI, although Chl f was a minor component (~8% of total Chl). The FR-PSI showed a maximal fluorescence emission peak of 750 nm at 77 K, which is red-shifted ~20 nm compared to the 730 nm recorded from the WL-PSI. The absorption peaks of P700 for WLPSI and FR-PSI were 699 nm and 702 nm, respectively. The function of Chl f in FR-PSI is discussed.

This is a preview of subscription content, log in to check access.

Abbreviations

APC:

allophycocyanin

CCA:

complementary chromatic adaptation

Chl:

chlorophyll

FR:

730 nm light-emitting diodes

DoDM:

β-dodecyl maltoside

FaRLiP:

far-red light photoacclimation

FR:

far-red light

FR-PSI:

isolated PSI from 730 nm LED-illuminated culture

OG:

n-octyl-β-D-glucopyranoside

PC:

phycocyanin

TMPD:

N,N,N',N'-tetramethyl-p-phenylenediamine

WL:

white fluorescent light

WL-PSI:

isolated PSI from white light culture

6803-PSI:

purified PSI complexes from Synechocystis 6803

References

  1. Airs R.L., Temperton B., Sambles C. et al.: Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and nearinfrared radiation.–FEBS Lett. 588: 3770–3777, 2014.

    Article  PubMed  CAS  Google Scholar 

  2. Akutsu S., Fujinuma D., Furukawa H. et al.: Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1isolated from Lake Biwa.–Photochem. Photobiol. 33: 35–40, 2011.

    CAS  Google Scholar 

  3. Amunts A., Toporik H., Borovikova A. et al.: Structure determination and improved model of plant photosystem I.–J. Biol. Chem. 285: 3478–3486, 2010.

    Article  PubMed  CAS  Google Scholar 

  4. Barber J.: Photosynthetic generation of oxygen.–Philos. T. R. Soc. B 363: 2665–2674, 2008.

    Article  CAS  Google Scholar 

  5. Barth P., Lagoutte B., Sétif P.: Ferredoxin reduction by photosystem I from Synechocystis sp. PCC 6803: toward an understanding of the respective roles of subunits PsaD and PsaE in ferredoxin binding.–Biochemistry 37: 16233–16241, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I.–Nature 426: 630–635, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. Chen M., Blankenship R.: Expanding the solar spectrum used by photosynthesis.–Trends Plant Sci. 16: 427–431, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Chen M., Li Y., Birch D. et al: A cyanobacterium that contains chlorophyll f–a red-absorbing photopigment.–FEBS Lett. 586: 3249–3254, 2012.

    Article  PubMed  CAS  Google Scholar 

  9. Chen M., Schliep M., Willows R. et al: A red-shifted chlorophyll.–Science 329: 1318–1319, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Croce R., van Amerongen H.: Light-harvesting in photosystem I.–Photosynth. Res. 116: 153–166, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. El-Khouly M.E., El-Mohsnawy E., Fukuzumi S.: Solar energy conversion: From natural to artificial photosynthesis.–J. Photoch. Photobio. C 31: 36–83, 2017.

    Article  CAS  Google Scholar 

  12. El-Mohsnawy E., Kopczak M.J., Schlodder E. et al.: Structure and function of intact photosystem I monomers from the cyanobacterium Thermosynechococcus elongatus.–Biochemistry49: 4740–4751, 20

    Article  PubMed  CAS  Google Scholar 

  13. Fromme P., Jordan P., Krauß N.: Structure of photosystem I.–BBA-Bioenergetics 1507: 5–31, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Gan F., Bryant D.A.: Adaptive and acclimative responses of cyanobacteria to far-red light.–Environ. Microbiol. 17: 3450–3465, 2015.

    Article  PubMed  CAS  Google Scholar 

  15. Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.–Science 345: 1312–1317, 2014.

    Article  PubMed  CAS  Google Scholar 

  16. Golbeck, J.H.: Photosystem I in cyanobacteria.–In: Bryant D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 319–360. Springer, Dordrecht 1994.

    Google Scholar 

  17. Golub M., Hejazi M., Kölsch A. et al.: Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering.–Photosynth. Res. 133: 163–173, 2017.

    Article  PubMed  CAS  Google Scholar 

  18. Goodwint W.: Biochemistry of pigments.–In Waterman T.H. (ed.): The Physiology of Crustacea. Pp. 101–140. Academic Press, New York and London 1960.

    Google Scholar 

  19. Grotjohann I., Fromme P.: Structure of cyanobacterial photosystem I.–Photosynth. Res. 85: 51–72, 2005.

    Article  PubMed  CAS  Google Scholar 

  20. Hiyama T., Ke B.: Difference spectra and extinction coefficients of P 700.–BBA-Bioenergetics. 267: 160–171, 1972.

    Article  PubMed  CAS  Google Scholar 

  21. Hou H.J., Allakhverdiev S.I., Najafpour M.M. et al.: Current challenges in photosynthesis: from natural to artificial.–Front Plant Sci. 5: 232, 2014.

    PubMed  PubMed Central  Google Scholar 

  22. Hu Q., Miyashita H., Iwasaki I. et al: A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis.–P. Natl. Acad. Sci. USA 95: 13319–13323, 1998.

    Article  CAS  Google Scholar 

  23. Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution.–Nature 411: 909–917, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Kruip J., Boekema E.J., Bald D. et al.: Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700. FA/FB and P700. FX) from the cyanobacterium Synechocystis PCC 6803.–J. Biol. Chem. 268: 23353–23360, 1993.

    PubMed  CAS  Google Scholar 

  25. Li M, Semchonok D.A., Boekema E.J., Bruce B.D.: Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.–Plant Cell 26: 1230–1245, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li Y., Cai Z.-L. Chen M.: Spectroscopic properties of chlorophyll f.–J. Phys. Chem. B 117: 11309–11317, 2013.

    Article  PubMed  CAS  Google Scholar 

  27. Li Y., Chen M.: Novel chlorophylls and new directions in photosynthesis research.–Funct. Plant Biol. 42: 493–501, 2015.

    Article  Google Scholar 

  28. Li Y., Lin Y., Garvey C.J. et al.: Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.–BBABioenergetics 1857: 107–114, 20

    Article  CAS  Google Scholar 

  29. Li Y., Lin Y., Loughlin P. et al.: Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f.–Front. Plant Sci. 5: 67, 2014.

    PubMed  PubMed Central  Google Scholar 

  30. Li Y., Scales N., Blankenship R. E. et al.: Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f.–BBA-Bioenergetics 1817: 1292–1298, 2012.

    Article  PubMed  CAS  Google Scholar 

  31. Miyashita H., Ikemoto H., Kurano N. et al.: Chlorophyll d as a major pigment.–Nature 383: 402, 1996.

    Article  CAS  Google Scholar 

  32. Mühlenhoff U., Zhao J., Bryant D.A.: Interaction between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 as revealed by chemical crosslinking.–Eur. J. Biochem. 235: 324–331, 1996.

    Article  PubMed  Google Scholar 

  33. Nelson N., Junge W.: Structure and energy transfer in photosystems of oxygenic photosynthesis.–Annu. Rev. Biochem. 84: 659–683, 2015.

    Article  PubMed  CAS  Google Scholar 

  34. Nyhus K.J., Ikeuchi M., Inoue Y. et al.: Purification and characterization of the photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413.–J. Biol. Chem. 267: 12489–12495, 1992.

    PubMed  CAS  Google Scholar 

  35. Ohkubo S., Miyashita H.: A niche for cyanobacteria producing chlorophyll f within a microbial mat.–ISME J. 11: 2368–2378, 2017.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Rögner M., Nixon P.J., Diner B.A.: Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803.–J. Biol. Chem. 265: 6189–6196, 1990.

    PubMed  Google Scholar 

  37. Schluchter W.M., Shen G., Zhao J., Bryant D.A.: Characterization of psal and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria.–Photochem. Photobiol. 64: 53–66, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Sivakumar V., Wang R., Hastings G.: Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina.–Biophys. J. 85: 3162–3172, 20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tomo T., Kato Y., Suzuki T. et al.: Characterization of highly purified photosystem I complexes from the chlorophyll ddominated cyanobacterium Acaryochloris marina MBIC 11017.–J. Biol. Chem. 283: 18198–18209, 2008.

    Article  PubMed  CAS  Google Scholar 

  40. Xu Q., Hoppe D., Chitnis V.P. et al.: Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL.–J. Biol. Chem. 270: 16243–16250, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Xu W., Chitnis P., Valieva A. et al.: Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX.–J. Biol. Chem. 278: 27864–27875, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Chen.

Additional information

Acknowledgements: The research was supported by the Australian Research Council Centre of Excellence for translational photosynthesis (CE140100015). The authors thank Dr. Ben Crossette (mass-spectral facility, University of Sydney) and Dr. Miguel A. Hernández-Prieto for assisting with LC-MS/MS and spectral analysis.

Electronic supplementary material

Fig. 1S. The HPLC chromatographs for the sucrose density band isolated from white light (WL) and far red light (FR) grown Halomicronema hongdechloris. The solid black (FR-2) and grey line (FR-1) represent the chromatographs for the FR band 2 and 1 (Fig.1), respectively. The dash black (WL-2) and grey line (WL-1) represent the chromatographs for the WL band 2 and 1 (Fig.1), respectively. Carotenoids, Chl f, Chl a, Chl a’, β-carotene and pheophytin a are assigned based on their retention time and online spectra.

Fig. 2S. Sequence alignment for PsaL’s detected from isolated PSI complexes of H. hongdechloris. PsaL (1JB0_L) from PSI crystal structure of Synechococcus elongates is used as a reference. The residues ligating chlorophyll a’s are highlighted by asterisk “*”.

Table 1S. LC-MS/MS peptide determinations for polypeptides resolved on SDS-PAGE (Fig. 3)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Vella, N. & Chen, M. Characterization of isolated photosystem I from Halomicronema hongdechloris, a chlorophyll f-producing cyanobacterium. Photosynthetica 56, 306–315 (2018). https://doi.org/10.1007/s11099-018-0776-x

Download citation

Additional key words

  • cyanobacteria
  • far-red light photoacclimation
  • oxygenic photosynthesis
  • red-shifted chlorophyll