Skip to main content
Log in

Analysis of photosystem II electron transfer with natural PsbA-variants by redox polymer/protein biophotoelectrochemistry

  • Published:
Photosynthetica

Abstract

Redox polymer/protein biophotoelectrochemistry was used to analyse forward electron transfer of isolated PSII complexes with natural PsbA-variants. PsbA1- or PsbA3-PSII was embedded in a redox hydrogel that allows diffusion-free electron transfer to the electrode surface and thus measurement of an immediate photocurrent response. The initial photocurrent density of the electrode is up to ~2-fold higher with PsbA1-PSII under all tested light conditions, the most prominent under high-light [2,300 μmol(photon) m–2 s–1] illumination with 5 μA cm–2 for PsbA3-PSII and 9.5 μA cm–2 for PsbA1-PSII. This indicates more efficient electron transfer in low-light-adapted PsbA1-PSII. In contrast, the photocurrent decays faster in PsbA1-PSII under all tested light conditions, which suggests increased stability of high-light-adapted PsbA3-PSII. These results confirm and extend previous observations that PsbA3-PSII has increased P680+•/QA–• charge recombination and thus less efficient photon-to-charge conversion, whereas PsbA1-PSII is optimised for efficient electron transfer with limited stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

Cyt:

cytochrome

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

LED:

light emitting diode

MES:

2-(N-morpholino)ethanesulfonic acid

P680:

reaction centre chlorophylls

PEG-DGE:

poly(ethyleneglycol)diglycidylether

PET:

photosynthetic electron transfer chain

Phe:

pheophytin

POs :

redox-hydrogel

Q:

plastoquinone

ROS:

reactive oxygen species

β-DM:

N-dodecyl-β-D-maltoside

References

  • Badura A., Esper B., Ataka K. et al.: Light-driven water splitting for (bio-)hydrogen production. Photosystem 2 as the central part of a bioelectrochemical device.–Photochem. Photobiol. 82: 1385–1390, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Badura A., Guschin D., Esper B. et al.: Photo-induced electron transfer between Photosystem 2 via cross-linked redox hydrogels.–Electroanalysis 20: 1043–1047, 2008.

    Article  CAS  Google Scholar 

  • Baniulis D., Yamashita E., Zhang H. et al.: Structure-function of the cytochrome b6f complex.–Photochem. Photobiol. 84: 1349–1358, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Clarke A.K., Hurry V.M., Gustafsson P., Oquist G.: Two functionally distinct forms of the photosystem II reactioncenter protein D1 in the cyanobacterium Synechococcus sp. PCC 7942.–P. Natl. Acad. Sci. USA 90: 11985–11989, 1993.

    Article  CAS  Google Scholar 

  • Cox N., Messinger J.: Reflections on substrate water and dioxygen formation.–BBA-Bioenergetics 1827: 1020–1030, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Dau H., Zaharieva I.: Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.–Acc. Chem. Res. 42: 1861–1870, 2009

    Article  PubMed  CAS  Google Scholar 

  • East G.A., del Valle M.A.: Easy-to-make Ag/AgCl reference electrode.–J. Chem. Educ. 77: 97, 2000.

    Article  CAS  Google Scholar 

  • Habermüller K., Ramanavicius A., Laurinavicius V., Schuhmann W.: An oxygen-insensitive reagentless glucose biosensor based on osmium-complex modified polypyrrole.–Electroanalysis 12: 1383–1389, 2000.

    Article  Google Scholar 

  • Hartmann V., Kothe T., Pöller S. et al.: Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells.–Phys. Chem. Chem. Phys. 16: 11936–11941, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth A.R., Müller M.G., Reus M. et al.: Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center. Pheophytin is the primary electron acceptor.–P. Natl. Acad. Sci. USA 103: 6895–6900, 2006.

    Article  CAS  Google Scholar 

  • Kato M., Cardona T., Rutherford A.W., Reisner E.: Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode.–J. Am. Chem. Soc. 134: 8332–8335, 2012a.

    Article  PubMed  CAS  Google Scholar 

  • Kato Y., Shibamoto T., Yamamoto S. et al.: Influence of the PsbA1/PsbA3, Ca2+/Sr2+ and Cl-/Br-exchanges on the redox potential of the primary quinone QA in Photosystem II from Thermosynechococcus elongatus as revealed by spectroelectrochemistry.–BBA-Bioenergetics 1817: 1998–2004, 2012b.

    Article  PubMed  CAS  Google Scholar 

  • Kós P.B., Deák Z., Cheregi O., Vass I.: Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium Thermosynechococcus elongatus BP-1.–Biochim. Biophys. Acta 1777: 74–83, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kothe T., Plumeré N., Badura A. et al.: Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications.–Angew. Chem. Int. Edit. 52: 14233–14236, 2013.

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A., Fufezan C., Trebst A.: Singlet oxygen production in photosystem II and related protection mechanism.–Photosynth. Res. 98: 551–564, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A., Rutherford A.W.: Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: Relevance to photodamage and phytotoxicity.–Biochemistry 37: 17339–17344, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl H., Kruip J., Seidler A. et al.: Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium.–J. Biol. Chem. 275: 20652–20659, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Nixon P.J., Michoux F., Yu J. et al.: Recent advances in understanding the assembly and repair of photosystem II.–Ann. Bot.-London 106: 1–16, 2010.

    Article  CAS  Google Scholar 

  • Ogami S., Boussac A., Sugiura M.: Deactivation processes in PsbA1-Photosystem II and PsbA3-Photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus.–Biochim. Biophys. Acta 1817: 1322–1330, 20

    Article  PubMed  CAS  Google Scholar 

  • Sander J., Nowaczyk M., Buchta J. et al.: Functional characterization and quantification of the alternative PsbA copies in Thermosynechococcus elongatus and their role in photoprotection.–J. Biol. Chem. 285: 29851–29856, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaefer M.R., Golden S.S.: Differential expression of members of a cyanobacterial psbA gene family in response to light.–J. Bacteriol. 171: 3973–3981, 1989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sicora C.I., Appleton S.E., Brown C.M. et al.: Cyanobacterial psbA families in Anabaena and Synechocystis encode trace, constitutive and UVB-induced D1 isoforms.–BBABioenergetics 1757: 47–56, 2006.

    Article  CAS  Google Scholar 

  • Sokol K.P., Mersch D., Hartmann V. et al.: Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers.–Energ. Environ. Sci. 9: 3698–3709, 2016.

    Article  CAS  Google Scholar 

  • Sugiura M., Azami C., Koyama K. et al.: Modification of the pheophytin redox potential in Thermosynechococcus elongatus Photosystem II with PsbA3 as D1.–BBA-Bioenergetics 1837: 139–148, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M., Boussac A.: Some Photosystem II properties depending on the D1 protein variants in Thermosynechococcus elongatus.–BBA-Bioenergetics 1837: 1427–1434, 20

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M., Kato Y., Takahashi R. et al.: Energetics in photosystem II from Thermosynechococcus elongatus with a D1 protein encoded by either the psbA1 or psbA3 gene.–Biochim. Biophys. Acta 1797: 1491–1499, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M., Ogami S., Kusumi M. et al.: Environment of TyrZ in photosystem II from Thermosynechococcus elongatus in which PsbA2 is the D1 protein.–J. Biol. Chem. 287: 13336–13347, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tichý M., Lupı́nková L., Sicora C. et al.: Synechocystis 6803 mutants expressing distinct forms of the Photosystem II D1 protein from Synechococcus 7942. Relationship between the psbA coding region and sensitivity to visible and UV-B radiation.–BBA-Bioenergetics 1605: 55–66, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Trammell S.A., Wang L., Zullo J.M. et al.: Orientated binding of photosynthetic reaction centers on gold using Ni-NTA selfassembled monolayers.–Biosens. Bioelectron. 19: 1649–1655, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Vinyard D.J., Gimpel J., Ananyev G.M. et al.: Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity.–J. Biol. Chem. 288: 5451–5462, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Vinyard D.J., Gimpel J., Ananyev G.M. et al.: Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.–J. Am. Chem. Soc. 136: 4048–4055, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Vöpel T., Ning Saw E., Hartmann V. et al.: Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes.–Biointerphases 11: 19001, 2015.

    Article  CAS  Google Scholar 

  • Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents.–Small 9: 2970–2978, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Yehezkeli O., Tel-Vered R., Wasserman J. et al.: Integrated photosystem II-based photo-bioelectrochemical cells.–Nat. Commun. 3: 742, 2012.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Nowaczyk.

Additional information

Acknowledgements: We thank Claudia König and Melanie Völkel for excellent technical assistance. This work was financially supported by the Deutsch–Israelische Projektkooperation (DIP) in the framework of the project “Nanoengineered Optobioelectronics with Biomaterials and Bioinspired Assemblies” and by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, V., Ruff, A., Schuhmann, W. et al. Analysis of photosystem II electron transfer with natural PsbA-variants by redox polymer/protein biophotoelectrochemistry. Photosynthetica 56, 229–235 (2018). https://doi.org/10.1007/s11099-018-0775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0775-y

Additional key words

Navigation