, Volume 56, Issue 1, pp 229–235 | Cite as

Analysis of photosystem II electron transfer with natural PsbA-variants by redox polymer/protein biophotoelectrochemistry

  • V. Hartmann
  • A. Ruff
  • W. Schuhmann
  • M. Rögner
  • M. M. Nowaczyk


Redox polymer/protein biophotoelectrochemistry was used to analyse forward electron transfer of isolated PSII complexes with natural PsbA-variants. PsbA1- or PsbA3-PSII was embedded in a redox hydrogel that allows diffusion-free electron transfer to the electrode surface and thus measurement of an immediate photocurrent response. The initial photocurrent density of the electrode is up to ~2-fold higher with PsbA1-PSII under all tested light conditions, the most prominent under high-light [2,300 μmol(photon) m–2 s–1] illumination with 5 μA cm–2 for PsbA3-PSII and 9.5 μA cm–2 for PsbA1-PSII. This indicates more efficient electron transfer in low-light-adapted PsbA1-PSII. In contrast, the photocurrent decays faster in PsbA1-PSII under all tested light conditions, which suggests increased stability of high-light-adapted PsbA3-PSII. These results confirm and extend previous observations that PsbA3-PSII has increased P680+•/QA–• charge recombination and thus less efficient photon-to-charge conversion, whereas PsbA1-PSII is optimised for efficient electron transfer with limited stability.

Additional key words

biophotovoltaics cyanobacteria D1-protein hydrogel 









light emitting diode


2-(N-morpholino)ethanesulfonic acid


reaction centre chlorophylls




photosynthetic electron transfer chain








reactive oxygen species




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_775_MOESM1_ESM.pdf (247 kb)
Supplementary material, approximately 247 KB.
11099_2018_775_MOESM2_ESM.pdf (217 kb)
Supplementary material, approximately 216 KB.


  1. Badura A., Esper B., Ataka K. et al.: Light-driven water splitting for (bio-)hydrogen production. Photosystem 2 as the central part of a bioelectrochemical device.–Photochem. Photobiol. 82: 1385–1390, 2006.CrossRefPubMedGoogle Scholar
  2. Badura A., Guschin D., Esper B. et al.: Photo-induced electron transfer between Photosystem 2 via cross-linked redox hydrogels.–Electroanalysis 20: 1043–1047, 2008.CrossRefGoogle Scholar
  3. Baniulis D., Yamashita E., Zhang H. et al.: Structure-function of the cytochrome b6f complex.–Photochem. Photobiol. 84: 1349–1358, 2008.CrossRefPubMedGoogle Scholar
  4. Clarke A.K., Hurry V.M., Gustafsson P., Oquist G.: Two functionally distinct forms of the photosystem II reactioncenter protein D1 in the cyanobacterium Synechococcus sp. PCC 7942.–P. Natl. Acad. Sci. USA 90: 11985–11989, 1993.CrossRefGoogle Scholar
  5. Cox N., Messinger J.: Reflections on substrate water and dioxygen formation.–BBA-Bioenergetics 1827: 1020–1030, 2013.CrossRefPubMedGoogle Scholar
  6. Dau H., Zaharieva I.: Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.–Acc. Chem. Res. 42: 1861–1870, 2009CrossRefPubMedGoogle Scholar
  7. East G.A., del Valle M.A.: Easy-to-make Ag/AgCl reference electrode.–J. Chem. Educ. 77: 97, 2000.CrossRefGoogle Scholar
  8. Habermüller K., Ramanavicius A., Laurinavicius V., Schuhmann W.: An oxygen-insensitive reagentless glucose biosensor based on osmium-complex modified polypyrrole.–Electroanalysis 12: 1383–1389, 2000.CrossRefGoogle Scholar
  9. Hartmann V., Kothe T., Pöller S. et al.: Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells.–Phys. Chem. Chem. Phys. 16: 11936–11941, 2014.CrossRefPubMedGoogle Scholar
  10. Holzwarth A.R., Müller M.G., Reus M. et al.: Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center. Pheophytin is the primary electron acceptor.–P. Natl. Acad. Sci. USA 103: 6895–6900, 2006.CrossRefGoogle Scholar
  11. Kato M., Cardona T., Rutherford A.W., Reisner E.: Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode.–J. Am. Chem. Soc. 134: 8332–8335, 2012a.CrossRefPubMedGoogle Scholar
  12. Kato Y., Shibamoto T., Yamamoto S. et al.: Influence of the PsbA1/PsbA3, Ca2+/Sr2+ and Cl-/Br-exchanges on the redox potential of the primary quinone QA in Photosystem II from Thermosynechococcus elongatus as revealed by spectroelectrochemistry.–BBA-Bioenergetics 1817: 1998–2004, 2012b.CrossRefPubMedGoogle Scholar
  13. Kós P.B., Deák Z., Cheregi O., Vass I.: Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium Thermosynechococcus elongatus BP-1.–Biochim. Biophys. Acta 1777: 74–83, 2008.CrossRefPubMedGoogle Scholar
  14. Kothe T., Plumeré N., Badura A. et al.: Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications.–Angew. Chem. Int. Edit. 52: 14233–14236, 2013.CrossRefGoogle Scholar
  15. Krieger-Liszkay A., Fufezan C., Trebst A.: Singlet oxygen production in photosystem II and related protection mechanism.–Photosynth. Res. 98: 551–564, 2008.CrossRefPubMedGoogle Scholar
  16. Krieger-Liszkay A., Rutherford A.W.: Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: Relevance to photodamage and phytotoxicity.–Biochemistry 37: 17339–17344, 1998.CrossRefPubMedGoogle Scholar
  17. Kuhl H., Kruip J., Seidler A. et al.: Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium.–J. Biol. Chem. 275: 20652–20659, 2000.CrossRefPubMedGoogle Scholar
  18. Nixon P.J., Michoux F., Yu J. et al.: Recent advances in understanding the assembly and repair of photosystem II.–Ann. Bot.-London 106: 1–16, 2010.CrossRefGoogle Scholar
  19. Ogami S., Boussac A., Sugiura M.: Deactivation processes in PsbA1-Photosystem II and PsbA3-Photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus.–Biochim. Biophys. Acta 1817: 1322–1330, 20CrossRefPubMedGoogle Scholar
  20. Sander J., Nowaczyk M., Buchta J. et al.: Functional characterization and quantification of the alternative PsbA copies in Thermosynechococcus elongatus and their role in photoprotection.–J. Biol. Chem. 285: 29851–29856, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Schaefer M.R., Golden S.S.: Differential expression of members of a cyanobacterial psbA gene family in response to light.–J. Bacteriol. 171: 3973–3981, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sicora C.I., Appleton S.E., Brown C.M. et al.: Cyanobacterial psbA families in Anabaena and Synechocystis encode trace, constitutive and UVB-induced D1 isoforms.–BBABioenergetics 1757: 47–56, 2006.CrossRefGoogle Scholar
  23. Sokol K.P., Mersch D., Hartmann V. et al.: Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers.–Energ. Environ. Sci. 9: 3698–3709, 2016.CrossRefGoogle Scholar
  24. Sugiura M., Azami C., Koyama K. et al.: Modification of the pheophytin redox potential in Thermosynechococcus elongatus Photosystem II with PsbA3 as D1.–BBA-Bioenergetics 1837: 139–148, 2014.CrossRefPubMedGoogle Scholar
  25. Sugiura M., Boussac A.: Some Photosystem II properties depending on the D1 protein variants in Thermosynechococcus elongatus.–BBA-Bioenergetics 1837: 1427–1434, 20CrossRefPubMedGoogle Scholar
  26. Sugiura M., Kato Y., Takahashi R. et al.: Energetics in photosystem II from Thermosynechococcus elongatus with a D1 protein encoded by either the psbA1 or psbA3 gene.–Biochim. Biophys. Acta 1797: 1491–1499, 2010.CrossRefPubMedGoogle Scholar
  27. Sugiura M., Ogami S., Kusumi M. et al.: Environment of TyrZ in photosystem II from Thermosynechococcus elongatus in which PsbA2 is the D1 protein.–J. Biol. Chem. 287: 13336–13347, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tichý M., Lupı́nková L., Sicora C. et al.: Synechocystis 6803 mutants expressing distinct forms of the Photosystem II D1 protein from Synechococcus 7942. Relationship between the psbA coding region and sensitivity to visible and UV-B radiation.–BBA-Bioenergetics 1605: 55–66, 2003.CrossRefPubMedGoogle Scholar
  29. Trammell S.A., Wang L., Zullo J.M. et al.: Orientated binding of photosynthetic reaction centers on gold using Ni-NTA selfassembled monolayers.–Biosens. Bioelectron. 19: 1649–1655, 2004.CrossRefPubMedGoogle Scholar
  30. Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.CrossRefPubMedGoogle Scholar
  31. Vinyard D.J., Gimpel J., Ananyev G.M. et al.: Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity.–J. Biol. Chem. 288: 5451–5462, 2013.CrossRefPubMedGoogle Scholar
  32. Vinyard D.J., Gimpel J., Ananyev G.M. et al.: Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.–J. Am. Chem. Soc. 136: 4048–4055, 2014.CrossRefPubMedGoogle Scholar
  33. Vöpel T., Ning Saw E., Hartmann V. et al.: Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes.–Biointerphases 11: 19001, 2015.CrossRefGoogle Scholar
  34. Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents.–Small 9: 2970–2978, 2013.CrossRefPubMedGoogle Scholar
  35. Yehezkeli O., Tel-Vered R., Wasserman J. et al.: Integrated photosystem II-based photo-bioelectrochemical cells.–Nat. Commun. 3: 742, 2012.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • V. Hartmann
    • 1
  • A. Ruff
    • 2
  • W. Schuhmann
    • 2
  • M. Rögner
    • 1
  • M. M. Nowaczyk
    • 1
  1. 1.Plant Biochemistry, Faculty of Biology and BiotechnologyRuhr-University BochumBochumGermany
  2. 2.Analytical Chemistry–Center for Electrochemical Science (CES), Faculty of Chemistry and BiochemistryRuhr-University BochumBochumGermany

Personalised recommendations