Skip to main content

Advertisement

SpringerLink
Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors
Download PDF
Download PDF
  • Open Access
  • Published: 10 January 2018

Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors

  • H. M. Kalaji1,2,
  • A. Rastogi3,4,
  • M. Živčák4,
  • M. Brestic4,
  • A. Daszkowska-Golec5,
  • K. Sitko6,
  • K. Y. Alsharafa7,
  • R. Lotfi8,
  • P. Stypiński9,
  • I. A. Samborska10 &
  • …
  • M. D. Cetner10 

Photosynthetica volume 56, pages 953–961 (2018)Cite this article

  • 1904 Accesses

  • 82 Citations

  • Metrics details

Abstract

The study examined photosynthetic efficiency of two barley landraces (cvs. Arabi Abiad and Arabi Aswad) through a prompt fluorescence technique under influence of 14 different abiotic stress factors. The difference in the behavior of photosynthetic parameters under the same stress factor in–between cv. Arabi Abiad and cv. Arabi Aswad indicated different mechanisms of tolerance and strategies for the conversion of light energy into chemical energy for both the landraces. This study confirmed the suitability of some chlorophyll fluorescence parameters as reliable biomarkers for screening the plants at the level of photosynthetic apparatus.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Abbreviations

ABS:

absorption

ABC/RC:

absorption flux per one active reaction center

Area:

total complimentary area between the fluorescence induction curve

Chl:

chlorophyll

CS:

cross section

DOT:

days of treatment

ETC:

electron transport chain

ET:

electron transport

F0 :

fluorescence at time 0

Ft :

fluorescence at time t

Fv/F0 :

ratio of photochemical to nonphotochemical quantum efficiencies

HighPAR:

high photosynthetic active radiation

HighT:

high temperature

LowPAR:

low photosynthetic active radiation

LowT:

low temperature

PI(abs):

performance index on absorbance basis

RC:

reaction center

TR0 :

trapped energy flux

ψ0 :

probability of an electron to reach the electron transport chain outside QA-.

References

  • Bolhàr-Nordenkampf H.R., Öquist G.: Chlorophyll fluorescence as a tool in photosynthesis research.–In: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H. R. et al. (ed.): Photosynthesis and production in a changing environment: a field and laboratory manual. Pp. 193–206. Chapman & Hall, London 1993.

  • Brestic M., Živčák M., Kalaji H.M. et al.: Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L.–Plant Physiol Bioch. 57: 93–105, 2012.

    Article  CAS  Google Scholar 

  • Cascio C., Schaub M., Novak K. et al.: Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions.–Environ. Exp. Bot. 68: 188–197, 2010.

    Article  CAS  Google Scholar 

  • Dai Y., Shen Z., Liu Y. et al.: Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg.–Environ. Exp. Bot. 65: 177–182, 2009.

    Article  CAS  Google Scholar 

  • Dayan F.E., Zaccaro M.L.M.: Chlorophyll fluorescence as a marker for herbicide mechanisms of action.–Pestic. Biochem. Phys. 102: 189–197, 2012.

    Article  CAS  Google Scholar 

  • Desotgiu R., Bussotti F., Faoro F. et al.: Early events in Populus hybrid and Fagus sylvatica leaves exposed to ozone.–Sci. World J. 10: 512–527, 2010.

    Article  CAS  Google Scholar 

  • Devi S.R., Prasad M.N.V.: Influence of ferulic acid on photo synthesis of maize: analysis of CO2 assimilation, electron transport activities, fluorescence emission and photophosphorylation.–Photosynthetica 32: 117–127, 1996.

    CAS  Google Scholar 

  • Fracheboud Y., Leipner J.: The application of chlorophyll fluorescence to study light, temperature, and drought stress.–In: De-Ell J.R., Toivonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 125-150, Kluwer Acad. Publ. Dordrecht 2003.

  • Gürel F., Öztürk Z. N., Uçarli C., Rosellini D.: Barley genes as tools to confer abiotic stress tolerance in crops.–Front. Plant Sci. 7: 1137, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants Without Soil, California. California Agricultural Experiment Station, Circular 347. Pp. 1-32. Univ. of California, Berkeley 1950.

    Google Scholar 

  • Horváth G., Droppa M., Oravecz A. et al.: Formation of the photosynthetic apparatus during greening of cadmiumpoisoned barley leaves.–Planta 199: 238–243, 1996.

    Article  Google Scholar 

  • Kalaji H.M., Bosa K., Kościelniak J., Hossain Z.: Chlorophyll a fluorescence–A useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.).–OMICS 15: 925–934, 2011a.

    Article  PubMed  CAS  Google Scholar 

  • Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley.–J. Photoch. Photobio. B 112: 1–6, 2012.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces.–Environ. Exp. Bot. 73: 64–72, 2011b.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Guo P.: Chlorophyll fluorescence: a useful tool in barley plant breeding programs.–In: Sánchez A., Gutiérrez S.J. (ed.): Photochemistry Research Progress. Pp. 439-463. Nova Sci. Publ. Inc., New York 2008.

  • Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.–Acta Physiol. Plant. 38: 102, 2016.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Łoboda T.: Photosystem II of barley seedlings under cadmium and lead stress.–Plant Soil Environ. 53: 511–516, 2007.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Pietkiewicz S.: Some physiological indices to be exploited as a crucial tool in plant breeding.–Plant Breed. Seeds Sci. 49: 19–39, 2004.

    Google Scholar 

  • Kang Y., Khan S., Ma X.: Climate change impacts on crop yield, crop water productivity and food security–A review.–Prog. Nat. Sci. 19: 1665–1674, 2009.

    Article  Google Scholar 

  • Kaur B., Kaur G., Asthir B.: Biochemical aspects of nitrogen use efficiency: An overview.–J. Plant Nutr. 40: 506–523, 2017.

    Article  CAS  Google Scholar 

  • Kautsky H., Hirsch A.: [New attempts to assimilate carbonic acid.]–Naturwissenschaften 19: 96, 1931. [In German]

    Google Scholar 

  • Krupa Z., Baszynski T.: Some aspects of heavy metals toxicity towards photosynthetic apparatus–direct and indirect effects on light and dark reactions: a review.–Acta Physiol. Plant. 17: 177–190, 1995.

    CAS  Google Scholar 

  • Kuckenberg J., Tartachnyk I., Noga G.: Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves.–Precis. Agric. 10: 34–44, 2009.

    Article  Google Scholar 

  • Lootens P., Ruttink T., Rohde A. et al.: High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis.–Plant Methods 12: 32, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathur S., Jajoo A., Mehta P., Bharti S.: Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).–Plant Biol. 13: 1–6, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Mathur S., Kalaji H.M., Jajoo A.: Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant.–Photosynthetica 54: 185–192, 2016.

    Article  CAS  Google Scholar 

  • Maxwell K., Johnson N.G.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves.–Plant Physiol. Bioch. 48: 16–20, 2010.

    Article  CAS  Google Scholar 

  • Merz D., Geyer M., Moss D.A., Ache H.-J.: Chlorophyll fluorescence biosensor for the detection of herbicides.–Fresen J. Anal. Chem. 354: 299–305, 1996.

    CAS  Google Scholar 

  • Morales F., Abadía A., Abadía J.: Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves.–Plant Physiol. 97: 886–893, 1991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.–J. Exp. Bot. 64: 3983–3998, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering.–Environ. Exp. Bot. 60: 438–446, 2007.

    Article  CAS  Google Scholar 

  • Roschina V., Melnikowa E.V.: Microspectrofluorometry: a new technique to study pollen allelopathy.–Allelopathy J. 3: 51–58, 1996.

    Google Scholar 

  • Santelia D., Lawson T.: Rethinking guard cell metabolism.–Plant Physiol. 172: 1371–1392, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.–In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer, Berlin 1994.

  • Sharma P., Dubey R.: Lead toxicity in plants.–Braz. J. Plant Physiol. 17: 35–52, 2005.

    Article  CAS  Google Scholar 

  • Siedlecka A., Krupa Z., Samuelsson G. et al.: Primary carbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction.–Plant Physiol. Bioch. 35: 951–957 1997.

    CAS  Google Scholar 

  • Spiller S., Terry N.: Limiting factors in photosynthesis: II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units.–Plant Physiol. 65: 121–125, 1980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava A., Guisse B., Greppin H., Strasser R.J.: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP.–BBA-Bioenergetics 1320: 95–106, 1997.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescent transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M., Pathre, U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.

  • Strasser R.J., Tsimilli-Michael M., Dangre D., Rai M.: Biophysical phenomics reveals functional building blocks of plants system biology: acase study for evaluation of the impast of Mycorrhization with Piriformospora indica.–In: Varma A., Oelmüller R. (ed.): Advanced Techniques in Soil Biology. Pp. 319-338. Springer, Berlin 2004.

  • Surpin M., Larkin R.M., Chory J.: Signal transduction between the chloroplast and the nucleus.–Plant Cell 14S: S327–S338, 2002.

    Article  CAS  Google Scholar 

  • Terry N., Huston R.P.: Effects of calcium on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets.–Plant Physiol. 55: 923–927, 1975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terry N.: Effects of sulfur on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets.–Plant Physiol. 57: 477–479, 1976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari A., Jajoo A., Bharti S.: Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membranes.–Photoch. Photobio. Sci. 7: 485–491, 2008.

    Article  CAS  Google Scholar 

  • Tomar R.S., Jajoo A.: Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum).–Ecotoxicol. Environ. Safe. 109: 110–115, 2014.

    Article  CAS  Google Scholar 

  • Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plant’s vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants.–In: Varma A. (ed.): Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics (3rd edition). Pp. 679–703. Springer, Berlin–Heidelberg 2008.

  • Walter A., Liebisch F., Hund A.: Plant phenotyping: from bean weighing to image analysis.–Plant Methods 11: 14, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Živčák M., Brestic M., Kunderlikova K. et al.: Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise?–J. Photoch. Photobio. B 152: 318–324, 2015.

    Article  CAS  Google Scholar 

  • Živčák M., Breštič M., Olšovska K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L.–Plant Soil Environ. 54: 133–139, 2008.

    Article  Google Scholar 

  • Živčák M., Olšovská K., Slamka P. et al.: Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency.–Plant Soil Environ. 60: 210–215, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Technology and Life Sciences (ITP), Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland

    H. M. Kalaji

  2. White Hill Company, Żurawia 71/3, 15-540, Białystok, Poland

    H. M. Kalaji

  3. Department of Meteorology, Poznan University of Life Sciences, Piatkowska 94, 60-649, Poznan, Poland

    A. Rastogi

  4. Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic

    A. Rastogi, M. Živčák & M. Brestic

  5. Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland

    A. Daszkowska-Golec

  6. Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland

    K. Sitko

  7. Department of Biological Science, Faculty of Science, Mutah University, 61710, Mutah, Jordan

    K. Y. Alsharafa

  8. Dryland Agricultural Research Institute, Agricultural Research Education & Extension Organization, Maragheh, Iran

    R. Lotfi

  9. Department of Agronomy, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland

    P. Stypiński

  10. Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Science – SGGW, Ul. Nowoursynowska 159, 02-776, Warsaw, Poland

    I. A. Samborska & M. D. Cetner

Authors
  1. H. M. Kalaji
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Rastogi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. Živčák
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. M. Brestic
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. A. Daszkowska-Golec
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. K. Sitko
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. K. Y. Alsharafa
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. R. Lotfi
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. P. Stypiński
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. I. A. Samborska
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. M. D. Cetner
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Rastogi.

Additional information

Acknowledgments: This work was supported by the research project of the Slovak Research and Development Agency under the project APVV-15-0721; and National Science Centre Poland, under the project UMO-2016/21/B/ST10/02271. AR thanks Slovak Academic Information Agency (SAIA) for providing National Scholarship for research in the year 2017. The present research was also financially supported by the grant of The National Centre for Research and Development (NCBR) - Ministry of Science and Higher Education, Poland. Agreement number POIR.01.01.01-00-1911/15-00 (Triffid - produkt przyszłości Klastra Obróbki Metali KKK. White Hill synergia kooperacji w obszarze B+R) and The financial Supports for Young Scientists (WULS-SGGW International Research Scholarship Fund: INT-270/2016- resolutions No. 64-2012/2013 and 42-2015/2016, Scholarship for one month travel abroad).

This article is published with open access at link.springer.com

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalaji, H.M., Rastogi, A., Živčák, M. et al. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56, 953–961 (2018). https://doi.org/10.1007/s11099-018-0766-z

Download citation

  • Received: 31 May 2017

  • Accepted: 25 August 2017

  • Published: 10 January 2018

  • Issue Date: September 2018

  • DOI: https://doi.org/10.1007/s11099-018-0766-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chlorophyll a fluorescence
  • JIP test
  • photosystem II
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.