Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 392–403 | Cite as

Evaluating the link between photosynthetic capacity and leaf vascular organization with principal component analysis

  • S. K. Polutchko
  • J. J. Stewart
  • B. Demmig-Adams
  • W. W. Adams
Article

Abstract

Significant linear relationships between photosynthetic capacity and principal components loaded by phloem cell numbers and tracheary elements per minor vein as well as the latter two normalized for vein density (proxy for apoplastic phloem loading capacity involving membrane transporters) were revealed for all apoplastic loaders (summer annuals and winter annual Arabidopsis thaliana). In addition, significant linear relationships between photosynthetic capacity and a principal component loaded by tracheary element cross-sectional areas and volumes per unit of leaf area (water flux capacity proxy) was present for symplastic and apoplastic loaders. Lastly, a significant linear relationship between photosynthetic capacity and a principal component loaded by phloem cell cross-sectional areas and volumes per unit of leaf area (proxy for symplastic loading capacity involving cytosolic enzymes for companion cells) was revealed for summer annual symplastic loaders as well as for A. thaliana (in the case of sieve elements, a proxy for sugar export capacity from the leaves).

Additional key words

growth temperature high light low light phloem parenchyma cells xylem 

Abbreviations

CC

companion cell

LC

loading cell (i.e., CC and PPC)

PC

principal component

PCA

principal component analysis

PPC

phloem parenchyma cell

SA

summer annual

SE

sieve element

TE

tracheary element

VD

vein density

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdi H., Williams L.J.: Principal component analysis.–WIRESComput. Stat. 2: 433–459, 2010.Google Scholar
  2. Adams W.W. III, Amiard V.S.E., Mueh K.E. et al.: Phloem loading type and photosynthetic acclimation to light.–In: van der Est A., Bruce D. (ed.): Photosynthesis: Fundamental Aspects to Global Perspectives. Pp. 814–816. Allen Press, Lawrence 2005.Google Scholar
  3. Adams W.W. III, Cohu C.M., Amiard V., Demmig-Adams B.: Associations between phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate.–Front. Plant Sci. 5: 24, 2014.Google Scholar
  4. Adams W.W. III, Muller O., Cohu C.M., Demmig-Adams B.: Foliar phloem infrastructure in support of photosynthesis.–Front. Plant Sci. 4: 194, 2013.PubMedPubMedCentralGoogle Scholar
  5. Adams W.W. III, Stewart J.J., Cohu C.M. et al.: Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature.–Front. Plant Sci. 7: 1026, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Adams W.W. III, Watson A.M., Mueh K.E. et al.: Photosynthetic acclimation in the context of structural constraints to carbon export from leaves.–Photosynth. Res. 94: 455–466, 2007CrossRefPubMedGoogle Scholar
  7. Ågren J., Schemske D.W.: Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range.–New Phytol. 194: 1112–1122, 2012.CrossRefPubMedGoogle Scholar
  8. Amiard V., Mueh K.E., Demmig-Adams B. et al.: Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development.–New Phytol. 173: 722–731, 2007.CrossRefPubMedGoogle Scholar
  9. Amiard V., Mueh K.E., Demmig-Adams B. et al: Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading.–P. Natl. Acad. Sci. USA 102: 12968–12973, 2005.CrossRefGoogle Scholar
  10. Beerling D.J., Franks P.J: The hidden cost of transpiration.–Nature 464: 495–496, 2010.CrossRefPubMedGoogle Scholar
  11. Beikircher B., Mittmann C., Mayr S.: Prolonged soil frost affects hydraulics and phenology of apple trees.–Front. Plant Sci. 7: 867, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Blonder B., Violle C., Bentley L.P., Enquist B.J.: Venation networks and the origin of the leaf economics spectrum.–Ecol. Lett. 14: 91–100, 2011.CrossRefPubMedGoogle Scholar
  13. Bond B.J., Kavanagh K.L.: Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential.–Tree Physiol. 19: 503–510, 1999.CrossRefPubMedGoogle Scholar
  14. Boyce C.K., Brodribb T.J., Feild T.S., Zwieniecki M.A.: Angiosperm leaf vein evolution was physiologically and environmentally transformative.–Philos. T. Roy. Soc. B-Biol. Sci. 276: 1771–1776, 2009.CrossRefGoogle Scholar
  15. Brodribb T.J., Feild T.S., Jordan G.J.: Leaf maximum photosynthetic rate and venation are linked by hydraulics.–Plant Physiol. 144: 1890–1898, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brodribb T.J., Feild T.S., Sack L.: Viewing leaf structure and evolution from a hydraulic perspective.–Funct. Plant Biol. 37: 488–498, 2010.CrossRefGoogle Scholar
  17. Brodribb T.J., Feild T.S.: Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification.–Ecol. Lett. 13: 175–183, 2010.CrossRefPubMedGoogle Scholar
  18. Brodribb T.J., Holbrook N.M., Zwieniecki M.A., Palma B.: Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima.–New Phytol. 165: 839–846, 2005.CrossRefPubMedGoogle Scholar
  19. Brodribb T.J., Jordan G.J.: Internal coordination between hydraulics and stomatal control in leaves.–Plant Cell Environ. 31: 1557–1564, 2008.CrossRefPubMedGoogle Scholar
  20. Brodribb T.J.: Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity.–Plant Sci. 177: 245–251, 2009.CrossRefGoogle Scholar
  21. Cavender-Bares J., Cortes P., Rambal S. et al.: Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan.–New Phytol. 168: 597–612, 2005.CrossRefPubMedGoogle Scholar
  22. Cohu C.M., Muller O., Adams W.W. III, Demmig-Adams B.: Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus summer annuals.–Physiol. Plantarum 152: 164–173, 2014.CrossRefGoogle Scholar
  23. Cohu C.M., Muller O., Demmig-Adams B., Adams W.W. III: Minor loading vein acclimation for three Arabidopsis thaliana ecotypes in response to growth under different temperature and light regimes.–Front. Plant Sci. 4: 240, 2013b.PubMedPubMedCentralGoogle Scholar
  24. Cohu C.M., Muller O., Stewart J.J. et al: Association between minor loading vein architecture and light- and CO2-saturated oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes.–Front. Plant Sci. 4: 264, 2013a.PubMedPubMedCentralGoogle Scholar
  25. Davis S.D., Sperry J.S., Hacke U.G.: The relationship between xylem conduit diameter and cavitation caused by freezing.–Am. J. Bot. 86: 1367–1372, 1999.CrossRefPubMedGoogle Scholar
  26. Delieu T., Walker D.A.: Polarographic measurements of photosynthetic oxygen evolution by leaf discs.–New Phytol. 89: 165–178, 1981.CrossRefGoogle Scholar
  27. Demmig-Adams B., Stewart J.J., Adams W.W. III: Environmental regulation of intrinsic photosynthetic capacity: an integrated view.–Curr. Opin. Plant Biol. 37: 34–41, 2017.CrossRefPubMedGoogle Scholar
  28. Demmig-Adams B., Stewart J.J., Adams W.W. III: Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment.–Philos. T. Roy. Soc. B 369: 20130244, 2014.CrossRefGoogle Scholar
  29. Dumlao M.R., Darehshouri A., Cohu C.M. et al.: Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type.–Photosynth. Res. 113: 181–189, 2012.CrossRefPubMedGoogle Scholar
  30. Evans J.R., Kaldenhoff R., Genty B., Terashima I.: Resistances along the CO2 diffusion pathway inside leaves.–J. Exp. Bot. 60: 2235–2248, 2009.CrossRefPubMedGoogle Scholar
  31. Fedriani J.M., Garrote P.J., Delgado M.d.M., Penteriani V.: Subtle gardeners: inland predators enrich local topsoils and enhance plant growth.–PLoS ONE 10: e0138273, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fondy B.R., Geiger D.R.: Sugar selectivity and other characteristics of phloem loading in Beta vulgaris L.–Plant Physiol. 59: 953–960, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Franks P.J.: Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients.–Plant Cell Environ. 29: 584–592, 2006CrossRefPubMedGoogle Scholar
  34. Geiger D.: Plant sucrose transporters from a biophysical point of view.–Mol. Plant. 4: 395–406, 2011.CrossRefPubMedGoogle Scholar
  35. Giaquinta R.T.: Phloem loading of sucrose.–Annu. Rev. Plant Physio. 34: 347–387, 1983.CrossRefGoogle Scholar
  36. Gifford R.M., Evans L.T.: Photosynthesis, carbon partitioning, and yield.–Ann. Rev. Plant Physiol. 32: 485–509, 1981.CrossRefGoogle Scholar
  37. Gifford R.M., Thorne J.H., Hitz W.D., Gianquinta R.T.: Crop productivity and photoassimilate partitioning.–Science 225: 801–808, 1984.CrossRefPubMedGoogle Scholar
  38. Gorsuch P.A., Pandey S., Atkin O.K.: Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves.–Plant Cell Environ. 33: 244–258, 2010.CrossRefPubMedGoogle Scholar
  39. Hacke U.G., Sperry J.S.: Functional and ecological xylem anatomy.–Perspect. Plant Ecol. 4: 97–115, 2001.CrossRefGoogle Scholar
  40. Hubbard R.M., Ryan M.G., Stiller V., Sperry J.S.: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine.–Plant Cell Environ. 24: 113–121, 2001.CrossRefGoogle Scholar
  41. Jumrani K., Bhatia V.S., Pandey G.P.: Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.–Photosynth. Res. 131: 333–350, 2017.CrossRefPubMedGoogle Scholar
  42. Klepek Y.S., Geiger D., Stadler R. et al.: Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-symport of numerous substrates, including myo-inositol, glycerol, and ribosele.–Plant Cell 17: 204–218, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Koornneef M., Meinke D.: The development of Arabidopsis as a model plant.–Plant J. 61: 909–921, 2010.CrossRefPubMedGoogle Scholar
  44. Kundu S.K, Tigerstedt P.M.A.: Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica).–Tree Physiol. 19: 47–52, 1999.CrossRefPubMedGoogle Scholar
  45. Langan S.J., Ewers F.W., Davis S.D.: Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs.–Plant Cell Environ. 20: 425–437, 1997.CrossRefGoogle Scholar
  46. Liesche J., Schulz A.: Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders.–Front. Plant Sci. 4: 207, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Maherali H., Sherrard M.E., Clifford M.H., Latta R.G.: Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass.–New Phytol. 180: 240–247, 2008.CrossRefPubMedGoogle Scholar
  48. McKown A.D., Cochard H., Sack L.: Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution.–Am. Nat. 175: 447–460, 2010.CrossRefPubMedGoogle Scholar
  49. Muller O., Cohu C.M., Stewart J.J. et al: Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes.–Physiol. Plantarum 152: 174–183, 2014a.CrossRefGoogle Scholar
  50. Muller O., Stewart J.J., Cohu C.M. et al: Leaf architectural, vascular, and photosynthetic acclimation to temperature in two biennials.–Physiol. Plantarum 152: 763–772, 2014b.CrossRefGoogle Scholar
  51. Nardini A., Gortan E., Salleo S.: Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species.–Funct. Plant Biol. 32: 953–961, 2005.CrossRefGoogle Scholar
  52. Oguchi R., Hikosaka K., Hirose T.: Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous species.–Plant Cell Environ. 28: 916–927, 2005.CrossRefGoogle Scholar
  53. Oguchi R., Hikosaka K., Hiura T., Hirose T.: Costs and benefits of photosynthetic light acclimation by tree seedlings in response to gap formation.–Oecologia 155: 665–675, 2008.CrossRefPubMedGoogle Scholar
  54. Oguchi R., Hikosaka K., Hiura T., Hirose T.: Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest.–Oecologia 149: 571–582, 2006.CrossRefPubMedGoogle Scholar
  55. Prado K., Maurel C.: Regulation of leaf hydraulics: from molecular to whole plant levels.–Front. Plant Sci. 4: 255, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pratt R.B., Jacobsen A.L.: Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics.–Plant Cell Environ. 40: 897–913, 2017.CrossRefPubMedGoogle Scholar
  57. Provart N.J., Alonso J., Assmann S.M. et al.: 50 years of Arabidopsis research: highlights and future directions.–New Phytol. 209: 921–944, 2016.CrossRefPubMedGoogle Scholar
  58. Ramsperger-Gleixner M., Geiger D., Hedrich R., Sauer N.: Differential expression of sucrose transporter and polyol transporter genes during maturation of common plantain companion cells.–Plant Physiol. 134: 147–160, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rennie E.A., Turgeon R.: A comprehensive picture of phloem loading strategies.–P. Natl. Acad. Sci. USA 106: 14162–14167, 2009.CrossRefGoogle Scholar
  60. Repo T., Kalliokoski T., Domisch T. et al: Effects of timing of soil frost thawing on Scots pine.–Tree Physiol. 25: 1053–1062, 2005.CrossRefPubMedGoogle Scholar
  61. Repo T., Lehto T., Finér L.: Delayed soil thawing affects root and shoot functioning and growth in Scots pine.–Tree Physiol. 28: 1583–1591, 2008.CrossRefPubMedGoogle Scholar
  62. Sack L., Holbrook N.M.: Leaf hydraulics.–Annu. Rev. Plant Biol. 57: 361–381, 2006.CrossRefPubMedGoogle Scholar
  63. Sack L., Scoffoni C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.–New Phytol. 198: 983–1000, 2013.CrossRefPubMedGoogle Scholar
  64. Santiago L.S., Goldstein G., Meinzer F.C. et al.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.–Oecologia 140: 543–550, 2004.CrossRefPubMedGoogle Scholar
  65. Schulz A.: Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates.–J. Plant Res. 128: 49–61, 2015.CrossRefPubMedGoogle Scholar
  66. Slewinski T.L., Zhang C., Turgeon R.: Structural and functional heterogeneity in phloem loading and transport.–Front. Plant Sci. 4: 244, 2013.PubMedPubMedCentralGoogle Scholar
  67. Sperry J.S., Hacke U.G., Pitterman J.: Size and function in conifer tracheids and angiosperm vessels.–Am. J. Bot. 93: 1490–1500, 2006.CrossRefPubMedGoogle Scholar
  68. Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy.–J. Ultrastruct. Res. 26: 31–43, 1969.CrossRefPubMedGoogle Scholar
  69. Stewart J.J., Adams W.W. III, Cohu C.M. et al.: Differences in light-harvesting, acclimation to growth-light environment, and leaf structural development between Swedish and Italian ecotypes of Arabidopsis thaliana.–Planta 242: 1277–1290, 20CrossRefPubMedGoogle Scholar
  70. Stewart J.J., Demmig-Adams B., Cohu C.M. et al.: Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe.–Plant Cell Environ. 39: 1549–1558, 2016.CrossRefPubMedGoogle Scholar
  71. Stewart J.J., Polutchko S.K., Adams W.W. III et al.: Light, temperature, and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana.–Physiol. Plantarum 160: 98–110, 20CrossRefGoogle Scholar
  72. Stewart J.J., Polutchko S.K., Adams W.W. III, Demmig-Adams B.: Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.–Photosynth. Res.: DOI:10.1007/s11120-017-0436-1, in press, 2017.Google Scholar
  73. Strand Å., Hurry V., Gustafsson P., Gardeström P.: Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates.–Plant J. 12: 605–614, 1997.CrossRefPubMedGoogle Scholar
  74. Strand Å., Hurry V., Henkes S. et al.: Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the source-biosynthesis pathway.–Plant Physiol. 119: 1387–1397, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tanaka Y., Sugano S.S., Shimada T., Hara-Nishimura I.: Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.–New Phytol. 198: 757–764, 2013.CrossRefPubMedGoogle Scholar
  76. Taylor S.H., Franks P.J., Hulme S.P. et al.: Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses.–New Phytol. 193: 387–396, 2012.CrossRefPubMedGoogle Scholar
  77. Terashima I. Hanba Y.T., Tholen D., Niinemets ü.: Leaf functional anatomy in relation to photosynthesis.–Plant Physiol. 155: 108–116, 2011.CrossRefPubMedGoogle Scholar
  78. Terashima I., Hanba Y.T., Tazoe Y. et al.: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.–J. Exp. Bot. 57: 343–354, 2006.CrossRefPubMedGoogle Scholar
  79. Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf.–J. Plant Res. 114: 93–105, 2001.CrossRefGoogle Scholar
  80. Walls R.L.: Angiosperm leaf vein patterns are linked to leaf functions in global-scale data set.–Am. J. Bot. 98: 244–253, 2011.CrossRefPubMedGoogle Scholar
  81. Wang J., Lu W., Tong Y.X., Yang Q.C.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light.–Front. Plant Sci. 7: 250, 2016.PubMedPubMedCentralGoogle Scholar
  82. Wardlaw I.F.: The control of carbon partitioning in plants.–New Phytol. 116: 341–381, 1990.CrossRefGoogle Scholar
  83. Wu B.-J., Chow W.S., Liu Y.-J. et al.: Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicas Thunb.–Plant Sci. 229: 23–31, 2014.CrossRefPubMedGoogle Scholar
  84. Zhu S.-D., Song J.-J., Li R.-H., Ye Q.: Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests.–Plant Cell Environ. 36: 879–891, 2013.CrossRefPubMedGoogle Scholar
  85. Zimmerman M.H.: Xylem Structure and the Ascent of Sap. Pp. 143. Springer, Berlin 1983.CrossRefGoogle Scholar
  86. Zweifel R., Steppe K., Sterck F.J.: Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.–J. Exp. Bot. 58: 2113–2131, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • S. K. Polutchko
    • 1
  • J. J. Stewart
    • 1
  • B. Demmig-Adams
    • 1
  • W. W. Adams
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations