Skip to main content
Log in

Photosynthesis and salinity: are these mutually exclusive?

  • Review
  • Published:
Photosynthetica

Abstract

Photosynthesis has walked into the path of evolution for over millions of years. Organisms relying directly on photosynthesis, when subjected to adverse environments for a long duration, experience retardation in their growth and development. Salinity stress is perceived as one of the major threats to agriculture as it can cause an irreversible damage to the photosynthetic apparatus at any developmental stage of the plant. However, halophytes, a special category of plants, carry out all life processes, including photosynthesis, without showing any compromise even under high saline environments. The fascinating mechanism for Na+ exclusion from cytosol besides retaining photosynthetic efficiency in halophytes can provide a valuable genetic resource for improving salt stress tolerance in glycophytes. Understanding how plants stabilize their photosynthetic machinery and maintain the carbon balance under saline conditions can be extremely useful in designing crops for saline and dry lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

Crassulacean acid metabolism

CBB:

Calvin–Benson–Bassham cycle

CP:

chloroplast protrusions

GB:

glycine betaine

G3P:

glyceraldehyde-3-phosphate

PA:

polyamines

3PGA:

3-phosphoglycerate

PEP:

phosphoenolpyruvate

PRC:

photochemical reaction centre

PTOX:

plastid terminal oxidase

Put:

putrescine

RC:

reaction centre

RuBP:

ribulose-1,5- bisphosphate

SQDG:

sulphoquinovosyldiacylglycerol

Spm:

spermine

Spd:

spermidine

References

  • Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A.: Plant responses to salt stress: Adaptive mechanisms.–Agronomy 7: 18, 2017.

    Article  CAS  Google Scholar 

  • Adiga P.R., Prasad G.L.: Biosynthesis and regulation of polyamines in higher plants.–In: Galston A.W., Smith T.A. (ed.): Polyamines in Plants. Pp. 3–24. Springer, Dordrecht 1985.

    Chapter  Google Scholar 

  • Ahmadizadeh M., Vispo N.A., Calapit-Palao C.D. et al.: Reproductive stage salinity tolerance in rice: a complex trait to phenotype.–Indian J. Plant Physi. 21: 528–356, 2016

    Article  CAS  Google Scholar 

  • Akhani H., Trimborn P., Ziegler H.: Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance.–Plant Syst. Evol. 206: 187–221, 1997.

    Article  Google Scholar 

  • Al-Hosani S., Oudah M.M., Henschel A. et al.: Global transcriptome analysis of salt acclimated Prochlorococcus AS9601.–Microbiol. Res. 176: 21–28, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Allen J.F., Williams J.C.: Photosynthesis reaction centres.–FEBS Lett. 438: 5–9, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Anwar K., Lakra N., Singla-Pareek S.L. et al.: Investigating abiotic stress response machinery in plants: The metabolomic approaches.–In: Dagar J.C., Sharma P.C., Sharma D.K. et al. (ed.): Innovative Saline Agriculture. Pp. 303–319. Springer, New Delhi 2016.

    Chapter  Google Scholar 

  • Arnon D.I.: The light reactions of photosynthesis.–P. Natl. Acad. Sci. USA 69: 2883–2892, 1971.

    Article  Google Scholar 

  • Arp W.J.: Effects of source-sink relations on photosynthetic acclimation to elevated CO2.–Plant Cell Environ. 14: 869–875, 1991.

    Article  CAS  Google Scholar 

  • Ashraf M., Hameed M., Arshad M. et al.: Salt tolerance of some potential forage grasses from Cholistan desert of Pakistan.–In: Khan M.A., Weber D.J (ed.): Ecophysiol. High Salinity Tolerance Plants. Pp. 31–54. Springer, Dordrecht 2006.

    Chapter  Google Scholar 

  • Aslam R., Bostan N., Maria M. et al: A critical review on halophytes: salt tolerant plants. — J. Med. Plants Res. 5: 7108–18, 2011.

  • Asrar H., Hussain T., Hadi S.M. et al.: Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph.–Environ. Exp. Bot. 135: 86–95, 2017.

    Article  CAS  Google Scholar 

  • Athar H.U.R., Zafar Z.U., Ashraf M.: Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators.–J. Agron. Crop Sci. 201: 428–442, 2015.

    Article  CAS  Google Scholar 

  • Bassham J.A., Benson A.A., Calvin M.: The path of carbon in photosynthesis–J. Biol. Chem. 185: 781–787, 1950.

    PubMed  CAS  Google Scholar 

  • Bassham J.A.: Mapping the carbon reduction cycle: a personal retrospective.–Photosynth. Res. 76: 35–52, 2003.

    Article  PubMed  Google Scholar 

  • Bastías E., González-Moro M.B., González-Murua C.: Interactive effects of excess boron and salinity on histological and ultrastructural leaves of Zea mays amylacea from the Lluta Valley (Arica-Chile).–Cienc. Investig. Agrar. 40: 581–595, 2013.

    Article  Google Scholar 

  • Belkhodja R., Morales F., Abadia A. et al.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.).–Plant Physiol. 104: 667–673, 1994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I.–Nature. 426: 630–635, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Biel K., Fomina, I.: Benson-Bassham-Calvin cycle contribution to the organic life on our planet.–Photosynthetica 53: 161–167, 2015.

    Article  CAS  Google Scholar 

  • Bose J., Shabala L., Pottosin I. et al.: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley.–Plant Cell Environ. 37: 589–600, 2014

    Article  PubMed  CAS  Google Scholar 

  • Briat J.F., Dubos C., Gaymard F.: Iron nutrition, biomass production, and plant product quality.–Trends Plant Sci. 20: 33–40, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Brugnoli E., Lauteri M.: Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes.–Plant Physiol. 95: 628–635, 1991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busch F.A., Sage R.F.: The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong RuBisCO control above the thermal optimum.–New Phytol. 213: 1036–1051, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Cassaniti C., Leonardi C., Flowers T.J.: The effects of sodium chloride on ornamental shrubs.–Sci. Hortic.-Amsterdam 122: 586–593, 2009.

    Article  CAS  Google Scholar 

  • Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell.–Ann. Bot.-London 103: 551–560, 2009.

    Article  CAS  Google Scholar 

  • Chen M.: Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.–Annu. Rev. Biochem. 83: 317–340, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Clijsters H., van Assche F.: Inhibition of photosynthesis by heavy metals.–Photosynth. Res. 7: 31–40, 1985 Das P., Nutan K.K., Singla-Pareek S.L. et al.: Understanding salinity responses and adopting’ omics-based’ approaches to generate salinity tolerant cultivars of rice.–Front. Plant Sci. 6: 712, 2015a.

    CAS  Google Scholar 

  • Das P., Nutan K.K., Singla-Pareek S.L. et al.: Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles.–Front. Environ. Sci. 2: 70, 2015b.

    Article  Google Scholar 

  • Debez A., Braun H.P., Pich A. et al.: Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages.–J. Proteomics. 75: 5667–5694, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Deinlein U., Stephan A.B., Horie T. et al.: Plant salt-tolerance mechanisms.–Trends Plant Sci. 19: 371–379, 2014.

  • Delfine S., Alvino A., Zacchini M. et al.: Consequences of salt stress on conductance to CO2 diffusion, RuBisCO characteristics and anatomy of spinach leaves.–Aust. J. Plant Physiol. 25: 395–402, 1998.

    Article  CAS  Google Scholar 

  • Demetriou G., Neonaki C., Navakoudis E. et al.: Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines.–BBA-Bioenergetics 1767: 272–280, 2007.

    Article  PubMed  CAS  Google Scholar 

  • De-Paoli H.C., Borland A.M., Tuskan G.A. et al.: Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.–J. Exp. Bot. 65: 3381–3393, 2014.

    Article  CAS  Google Scholar 

  • De Souza A.P., Gaspar M., Da-Silva E.A. et al.: Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane.–Plant Cell Environ. 31: 1116–1127, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Diray-Arce J., Clement M., Gul B. et al.: Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.–BMC Genomics 16: 353, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong C., Fu Y., Liu G. et al.: Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS.–Adv. Space Res. 53: 1557–1566, 2014.

    Article  CAS  Google Scholar 

  • Duarte B., Santos D., Marques J.C. et al.: Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change.–Plant Physiol. Bioch. 67: 178–188, 2013.

    Article  CAS  Google Scholar 

  • Dyachenko O.V., Zakharchenko N.S., Shevchuk T.V. et al.: Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress.–Biochemistry-Moscow+ 71: 461–465, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Farooq S., Azam F.: A new allopolyploid wheat for stressed lands and poverty alleviation.–Field Crop Res. 100: 369–373, 2007.

    Article  Google Scholar 

  • Fleming I.: Absolute configuration and the structure of chlorophyll.–Nature 216: 151–152, 1967.

    Article  CAS  Google Scholar 

  • Forkel M., Carvalhais N., Rödenbeck C. et al.: Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems.–Science 351: 696–699, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A., Pareek A., Sopory S.K. et al: A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool.–Plant J. 80: 93–105, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Golldack D., Li C., Mohan H. et al.: Tolerance to drought and salt stress in plants: Unraveling the signaling networks.–Front. Plant Sci. 5: 151, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindjee, Allen J.F., Beatty J.T.: Celebrating the millennium: historical highlights of Photosynthesis research, Part 3.–Photosynth. Res. 80: 1–13, 2004.

    Article  PubMed  Google Scholar 

  • Govindjee, Beatty J.T., Gest H.: Celebrating the millennium: historical highlights of Photosynthesis research, Part 2.–Photosynth. Res. 76: 1–11, 2003.

    Article  Google Scholar 

  • Govindjee, Krogmann D.: Discoveries in oxygenic photosynthesis (1727–2003): a perspective.–Photosynth. Res. 80: 15–57, 2004.

    Article  PubMed  Google Scholar 

  • Govindjee, Veit W.: The Z-scheme of electron transport in photosynthesis. http://www.life.illinois.edu/govindjee/ZScheme. html (accessed continuously since August 2010), 2010.

  • Gupta B., Huang B.: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.–Int. J. Genom. 2014: 701596, 2014.

    Google Scholar 

  • Gupta B.K., Sahoo K.K., Ghosh A. et al.: Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice.–Plant Cell Environ. DOI: 10.1111/pce.12968, 2017.

    Google Scholar 

  • Gupta B.K., Tripathi A.K., Joshi R. et al.: Designing climatesmart future crops employing signal transduction components.–In: Pandey G.K. (ed.): Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, Vol 2. Pp. 393–413. Springer, New York 2015.

    Article  Google Scholar 

  • Hayward H.E., Long E.M.: Anatomical and physiological responses of the tomato to varying concentrations of sodium chloride sodium sulphate, and nutrient solutions.–Bot. Gaz. 102: 437–462, 1941.

    Article  CAS  Google Scholar 

  • Hernandez P., Müller M., Appel R.D.: Automated protein identification by tandem mass spectrometry: Issues and strategies.–Mass Spectrom. Rev. 25: 235–254, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hill R., Bendall F.: Function of the two cytochrome components in chloroplasts: A working hypothesis.–Nature 186: 136–137, 1960.

    Article  CAS  Google Scholar 

  • Hoang T.M., Tran T.N., Nguyen T.K. et al.: Improvement of salinity stress tolerance in rice: challenges and opportunities.–Agronomy 6: 54, 2016.

    Article  CAS  Google Scholar 

  • Horgan R.P., Kenny L.C.: SAC review: ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics.–Obstet. Gynecol. 13: 189–195, 2011.

    Article  Google Scholar 

  • Hügler M., Sievert S.M.: Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.–Annu. Rev. Mar. Sci. 3: 261–89, 2011.

    Article  Google Scholar 

  • Ishida H., Yoshimoto K., Izumi M. et al.: Mobilization of RuBisCO and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.–Plant Physiol. 148: 142–155, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivanova T.V., Maiorova O.V., Orlova Y.V. et al.: Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions.–Russ. J. Plant Physl+ 63: 763–775, 2016.

    Article  CAS  Google Scholar 

  • Jacob T., Ritchie S., Assmann S.M., Gilroy S.: Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity.–P. Natl. Acad. Sci. USA 96: 12192–12197, 1999.

    Article  CAS  Google Scholar 

  • Jha B. Agarwal P.K., Reddy P.S. et al.: Identification of saltinduced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.–Genes Genet. Syst. 84: 111–120, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Joshi R., Karan R., Singla-Pareek S.L. et al.: Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress.–Plant Cell Rep. 35: 27–41, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Joshi R., Prashat R., Sharma P.C. et al.: Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress.–Ind. J. Plant Physiol. 21: 545–555, 2016.

    Article  CAS  Google Scholar 

  • Joshi R., Ramanarao M.V., Bedre R. et al.: Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants.–In: Pandey G.K. (ed.): Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, vol 2. Pp. 243–280. Springer, New York 2015.

    Article  Google Scholar 

  • Joshi R., Sahoo K.K., Tripathi A.K. et al.: Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition.–Plant Cell Environ. DOI: 10.1111/pce.12947, 2017.

    Google Scholar 

  • Juneau P., Barnett A., Méléder V. et al.: Combined effect of high light and high salinity on the regulation of photosynthesis in three diatom species belonging to the main growth forms of intertidal flat inhabiting microphytobenthos.–J. Exp. Mar. Biol. Ecol. 463: 95–104, 2015.

    Article  CAS  Google Scholar 

  • Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II.–P. Natl. Acad. Sci. USA 14: 2988–2993, 2017.

    Article  CAS  Google Scholar 

  • Karan R., Singla-Pareek S.L., Pareek A.: Histidine kinase and response regulator genes as they relate to salinity tolerance in rice.–Funct. Integr. Genomic. 9: 411–417, 2009.

    Article  CAS  Google Scholar 

  • Kebeish R., Niessen M., Thiruveedhi K. et al.: Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana.–Nat. Biotechnol. 25: 593–599, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Koyro H.W., Hussain T., Huchzermeyer B. et al.: Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations.–Environ. Exp. Bot. 91: 22–29, 2013.

    Article  CAS  Google Scholar 

  • Koyro H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.).–Environ. Exp. Bot. 56: 136–146, 2006.

    Article  CAS  Google Scholar 

  • Krupinska K.: Fate and activities of plastids during leaf senescence.–In: Wise R.R., Hoober J.K. (ed.): The Structure and Function of Plastids. Pp. 433–449. Springer, Dordrecht 2006.

    Chapter  Google Scholar 

  • Kumar G., Kushwaha H.R., Panjabi-Sabharwal V. et al.: Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging.–BMC Plant Biol. 12: 107, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar G., Purty R.S., Sharma M.P. et al.: Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathwayrelated genes.–J. Plant Physiol. 166: 507–520, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kumar R., Mustafiz A., Sahoo K.K. et al.: Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response.–Plant Mol. Biol. 79: 555–568, 2012.

    CAS  Google Scholar 

  • Kumari S., Roy S., Singh P. et al.: Cyclophilins: proteins in search of function.–Plant Signal. Behav. 8: e22734, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Kumari S., Sabharwal V.P.N., Kushwaha H.R. et al.: Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L.–Funct. Integr. Genom. 9: 109–123, 2009b.

    Article  CAS  Google Scholar 

  • Kumari S., Singh P., Singla-Pareek S.L. et al.: Heterologous expression of a salinity and developmentally regulated rice cyclophilin gene (OsCyp2) in E. coli and S. cerevisiae confers tolerance towards multiple abiotic stresses.–Mol. Biotechnol. 42: 195–204, 2009a.

    Article  PubMed  CAS  Google Scholar 

  • Lakra N., Kaur C., Anwar K. et al.: Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment.–Plant Cell Environ. DOI: 10.1111/pce.12946, 2017.

    Google Scholar 

  • Lakra N., Nutan K.K., Das P. et al: A nuclear-localized histonegene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery.–J. Plant Physiol. 176: 36–46, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Lazcano A., Miller S.L.: The origin and early evolution of life: Prebiotic chemistry, the Pre-RNA world, and time.–Cell 85: 793–798, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lee M.H., Cho E.J., Wi S.G. et al.: Divergences in morphological changes and antioxidant responses in salt-tolerant and saltsensitive rice seedlings after salt stress.–Plant Physiol. Bioch. 70: 325–35, 2013.

    Article  CAS  Google Scholar 

  • Leegood R.C.: A welcome diversion from photorespiration.–Nat. Biotechnol. 25: 539–540, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Leverenz J.W.: Chlorophyll content and the light response curve of shade-adapted conifer needles.–Physiol. Plantarum 71: 20–29, 1987.

    Article  CAS  Google Scholar 

  • Liu X., Fan Y., Mak M. et al.: QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley.–BMC Genomics. 18: 9, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Males J, Griffiths H.: Stomatal biology of CAM plants.–Plant Physiol. 174: 550–560, 2017.

    CAS  Google Scholar 

  • Mano J., Endo T., Miyake C.: How do photosynthetic organisms manage light stress? A tribute to the late Professor Kozi Asada.–Plant Cell Physiol. 57: 1351–1353, 2016.

    PubMed  CAS  Google Scholar 

  • Maríálová L., Vítámvás P., Hynek R. et al.: Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte.–Front. Plant Sci. 7: 1154, 2016.

    Google Scholar 

  • Mastrobuoni G, Irgang S, Pietzke M. et al.: Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii.–BMC Genomics 13: 215, 2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathur S., Agrawal D., Jajoo A.: Photosynthesis: response to high temperature stress.–J. Photoch. Photobio. B 137: 116–126, 2014.

    Article  CAS  Google Scholar 

  • McLaughlin S.B., McConathy R.K., Duvick D. et al.: Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white Pine trees.–Forest Sci. 28: 60–70, 1982.

    Google Scholar 

  • Meinzer F.C., Zhu J.: Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress.–Funct. Plant Biol. 26: 79–86, 1999.

    Google Scholar 

  • Meiri A., Poljakoff-Mayber A.: The effect of chlorine salinity on growth of bean leaves in thickness and in area.–Israel J. Bot. 16: 115–123, 1967.

    Google Scholar 

  • Meng F., Luo Q., Wang Q. et al.: Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.).–Sci. Rep. 6: 23098, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng H.B., Jiang S.S., Hua S.J. et al.: Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress.–Agr. Sci. China 10: 363–375, 2011.

    Article  Google Scholar 

  • Ming R., [ptVan Buren R., Wai C.M. et al.: The pineapple genome and the evolution of CAM photosynthesis.–Nat. Genet. 47: 1435–1442, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohapatra P.K., Singh N.R.: Teaching the Z-Scheme of electron transport in photosynthesis: a perspective.–Photosynth. Res. 123: 105–114, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Moinuddin M., Gulzar S., Hameed A. et al.: Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan.–Photosynth. Res. 131: 51–64, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Müller M., Santarius K.A.: Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity.–Plant Physiol. 62: 326–329, 1978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R., Gilliham M.: Salinity tolerance of crops–what is the cost?–New Phytol. 208: 668–673, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress.–BBABioenergetics 1767: 414–421, 2007.

    Article  CAS  Google Scholar 

  • Nawaz I., Iqbal M., Hakvoort H.W. et al.: Expression levels and promoter activities of candidate salt tolerance genes in halophytic and glycophytic Brassicaceae.–Environ. Exp. Bot. 99: 59–66, 2014.

    Article  CAS  Google Scholar 

  • Neale P.J., Melis A.: Salinity-stress enhances photoinhibition of photosynthesis in Chlamydomonas reinhardtii.–J. Plant Physiol. 134: 619–622, 1989.

    Article  CAS  Google Scholar 

  • Neelam S., Subramanyam R.: Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells.–J. Photoch. Photobio. B 124: 63–70, 2013.

    Article  CAS  Google Scholar 

  • Negrão S., Schmöckel S.M., Tester M.: Evaluating physiological responses of plants to salinity stress.–Ann. Bot.-London 119: 1–11, 2017.

    Article  Google Scholar 

  • Nieva F.J.J., Castellanos E.M., Figueroa M.E. et al.: Gas exchange and chlorophyll fluorescence of C3 and C4 saltmarsh species.–Photosynthetica 36: 397–406, 1999.

    Article  CAS  Google Scholar 

  • Nongpiur R., Soni P., Karan R. et al.: Histidine kinases in plants: cross talk between hormone and stress responses.–Plant Signal. Behav. 7: 1230–1237, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nongpiur R.C., Singla-Pareek S.L., Pareek A.: Genomics approaches for improving salinity stress tolerance in crop plants.–Curr. Genomics 17: 343–357, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oukarroum A., Bussotti F., Goltsev V. et al.: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress.–Environ. Exp. Bot. 109: 80–88, 2015.

    Article  CAS  Google Scholar 

  • Ozfidan-Konakci C., Uzilday B., Ozgur R. et al.: Halophytes as a source of salt tolerance genes and mechanisms: a case study for the Salt Lake area, Turkey.–Funct. Plant Biol. 43: 575–589, 2016.

    Article  CAS  Google Scholar 

  • Paredes M., Quiles M.J.: The effects of cold stress on photosynthesis in Hibiscus plants.–PLoS ONE 10: e0137472, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pareek A., Singla S.L., Grover A.: Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera.–Plant Mol. Biol. 29: 293–301, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Pareek A., Singla-Pareek S.L., Grover A.: Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar.–Curr. Sci. 75: 1023–1035, 1998.

    CAS  Google Scholar 

  • Pareek A., Singla S.L., Grover A.: Short-term salinity and high temperature stress-associated ultrastructural alterations in young leaf cells of Oryza sativa L.–Ann. Bot.-London 80: 629–639, 1997.

    Article  Google Scholar 

  • Pareek A., Sopory S.K., Bohnert H.J. et al.: Abiotic Stress Adaptation in Plants. Pp. 526. Springer, Dordrecht 2010.

    Book  Google Scholar 

  • Percey W.J., McMinn A., Bose J. et al.: Salinity effects on chloroplast PSII performance in glycophytes and halophytes.–Funct. Plant Biol. 43: 1003–1015, 2016.

    Article  CAS  Google Scholar 

  • Poljakoff-Mayber A.: Morphological and anatomical changes in plants as a response to salinity stress.–In: Poljakoff-Mayber A., Gale J. (ed.): Plants in Saline Environments. Pp. 97–117. Springer, Berlin–Heidelberg 1975.

    Chapter  Google Scholar 

  • Porcel R., Redondo-Gómez S., Mateos-Naranjo E. et al.: Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces nonphotochemical quenching in rice plants subjected to salt stress.–J. Plant Physiol. 185: 75–83, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Pospíšil P.: Production of reactive oxygen species by photosystem II.–BBA-Bioenergetics 1787: 1151–1160, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Prins A., van Heerden P.D.R., Olmos E. et al.: Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) vesicular bodies.–J. Exp. Bot. 59: 1935–1950, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Purty R.S., Kumar G., Singla-Pareek S.L. et al.: Towards salinity tolerance in Brassica: an overview.–Physiol. Mol. Biol. Plants 14: 39–49, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qadir M., Quillérou E., Nangia V. et al.: Economics of saltinduced land degradation and restoration.–Nat. Resour. Forum 38: 282–295, 2014.

    Article  Google Scholar 

  • Rabhi M., Castagna A., Remorini D. et al.: Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica.–S. Afr. J. Bot. 79: 39–47, 2012.

    Article  CAS  Google Scholar 

  • Rabhi M., Hafsi C., Lakhdar A. et al.: Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions.–Afr. J. Eco. 47: 463–468, 2009.

    Article  Google Scholar 

  • Rahman H., Jagadeeshselva N., Valarmathi R. et al.: Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.–Plant Mol. Biol. 85: 485–503, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Raines C.A.: The Calvin cycle revisited.–Photosynth. Res. 75: 1–10, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ramani B., Zorn H., Papenbrock J.: Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations.–Z. Naturforsch. 59: 835–842, 2004.

    Article  CAS  Google Scholar 

  • Rangani J., Parida A.K., Panda A. et al.: Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative dand confer salt tolerance in an extreme halophyte Salvadora persica L.–Front. Plant Sci. 7: 50, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy A.R., Chaitanya K.V., Vivekanandan M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants.–J. Plant Physiol. 161: 1189–1202, 2004.

    Article  CAS  Google Scholar 

  • Redondo-Gómez S., Mateos-Naranjo E., Cambrolle J. et al.: Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.–Ann. Bot.-London 102: 103–112, 2008.

    Article  Google Scholar 

  • Sage R.F.: Photosynthetic efficiency and carbon concentration in terrestrial plants: the C4 and CAM solutions.–J. Exp. Bot. 65: 3323–3325, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Samira M., Hichem H., Boughalleb F. et al.: Effect of salinitylight interaction on the activity of photosystem II of excised leaves of maize.–Afr. Crop Sci. J. 23: 343–354, 2015.

    Article  Google Scholar 

  • Sang T., Shan X., Li B. et al.: Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings.–Plant Cell Rep. 35: 1769–1782, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Schieber M., Chandel N.S.: ROS function in redox signaling and oxidative stress.–Curr. Biol. 24: R453–R462, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seepratoomrosh J., Pokethitiyook P., Meetam M. et al.: The effect of light stress and other culture conditions on photoinhibition and growth of Dunaliella tertiolecta.–Appl. Biochem. Biotech. 178: 396–407, 2016.

    Article  CAS  Google Scholar 

  • Seki M., Ishida J., Narusaka M. et al.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.–Plant J. 31: 279–292, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Senge M.O., Ryan A.A., Letchford K.A. et al.: Chlorophylls, symmetry, chirality, and photosynthesis.–Symmetry 6: 781–843, 2014.

    Article  CAS  Google Scholar 

  • Sengupta S., Majumder A.L.: Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach.–Planta 229: 911–929, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Shabala S., Cuin T.A., Prismall L. et al.: Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress.–Planta 227: 189–197, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shabala S., Mackay A.: Ion transport in halophytes.–Adv. Bot. Res. 57: 151–187, 2011.

    Article  CAS  Google Scholar 

  • Shabala S.: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops.–Ann. Bot.-London 112: 1209–1221, 2013.

    Article  Google Scholar 

  • Sharan A., Soni P., Nongpiur R.C. et al.: Mapping the ‘Two component system’ network in rice.–Sci. Rep. 7: 9287, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P., Jha A.B., Dubey R.S. et al.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.–J. Bot. 2012: 217037, 2012.

    Google Scholar 

  • Sharma R., Mishra M., Gupta B. et al.: De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea.–PLoS ONE 10: e0126783, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shevela D., Björn L.O., Govindjee.: Evolution of the Z-scheme of photosynthesis: a perspective.–Photosynth. Res. 133: 5–15, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Shu S., Guo S.R., Sun J. et al.: Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine.–Physiol. Plantarum 146: 285–296, 2012

    Article  CAS  Google Scholar 

  • Singh A.K., Kumar R., Pareek A. et al.: Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco.–Mol. Biotechnol. 52: 205–216, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek S.L., Yadav S.K., Pareek A. et al.: Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II.–Transgenic Res. 17: 171–180, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Sobhanian H., Motamed N., Jazii F.R. et al.: Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant.–J. Proteome Res. 9: 2882–2897, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Soda N., Sharan A., Gupta B.K. et al.: Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance.–Sci. Rep. 6: 34762, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soni P., Nutan K.K., Soda N. et al.: Towards understanding abiotic stress signaling in plants: convergence of genomic, transcriptomic, proteomic, and metabolomic approaches.–In: Paney G.K (ed.): Elucidation of Abiotic Stress Signaling in Plants. Vol. 2. Pp. 3–40. Springer, New York 2015.

    Article  Google Scholar 

  • Stanley S.M.: An ecological theory for the sudden origin of multicellular life in the late Precambrian.–P. Natl. Acad. Sci. USA 70: 1486–1489, 1973.

    Article  CAS  Google Scholar 

  • Stebbins G. L.: Chromosomal variation and evolution.–Science 152: 1463–1469, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Stepien P., Johnson G.N.: Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink.–Plant Physiol. 149: 1154–1165, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strogonov B.P.: Physiological Basis of Salt Tolerance of Plants (as Affected by Various Types of Salinity). Pp. 279. Akademia Nauk SSSR, Moskva 1964.

    Google Scholar 

  • Sudhir P.R., Pogoryelov D., Kovacs L. et al.: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis.–J. Biochem. Mol. Biol. 38: 481–485, 2005.

    PubMed  CAS  Google Scholar 

  • Suga M., Akita F., Hirata K. et al.: Native structure of photosystem II at 1.95 A resolution viewed by femtosecond Xray pulses.–Nature 517: 99–103, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Sultana N., Ikeda T., Itoh R.: Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains.–Environ. Exp. Bot. 42: 211–220, 1999.

    Article  CAS  Google Scholar 

  • Takache H., Pruvost J., Marec H.: Investigation of light/dark cycles effects on the photosynthetic growth of Chlamydomonas reinhardtii in conditions representative of photobioreactor cultivation. — Algal Res. 8: 192–204, 2015.

    Article  Google Scholar 

  • Tezara W., Mitchell V.J., Driscoll S.D. et al.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. — Nature 401: 914–917, 1999.

    Article  CAS  Google Scholar 

  • Thagela P., Yadav R.K., Mishra V. et al.: Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylls primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. — Protoplasma 254: 303–313, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Theerawitaya C., Samphumphaung T., Cha-Um S. et al.: Responses of Nipa palm (Nypa fruticans) seedlings, a mangrove species, to salt stress in pot culture. — Flora 209: 597–603, 2014.

    Article  Google Scholar 

  • Thomas B.J., Gest H., Govindjee.: Celebrating the millennium. historical highlights of photosynthesis research. — Photosynth. Res. 73: 1–6, 2002.

    Article  Google Scholar 

  • Tripathi A.K., Pareek A., Singla-Pareek S.L.: A NAP-family histone chaperone functions in abiotic stress response and adaptation.–Plant Physiol. 171: 2854–2868, 2016.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Udovenko G.V., Mashanskiï V.F., Sinitskaya I.A.: Changes of the root cell ultrastructure in plants with different salt tolerance during salinization.–Fiziol. Rast. 17: 975–981, 1970.

    CAS  Google Scholar 

  • United Nation University Institute for Water, Environment and Health (UNU-INWEH) report. Pp. 26. Hamilton, Canada 2014

  • Vinyard D.J., Ananyev G.M., Dismukes G.C.: Photosystem II: the reaction centre of oxygenic photosynthesis. — Annu. Rev. Biochem. 82: 577–606, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Volkov V.: Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. — Front. Plant Sci. 6: 873, 2015.

    PubMed  PubMed Central  Google Scholar 

  • von Caemmerer S., Quick W.P., Furbank R.T.: The development of C4 rice: current progress and future challenges. — Science 336: 1671–1672, 2012.

    Article  PubMed  CAS  Google Scholar 

  • von Willert D.J., Kramer D.: [Ultrastructure and crassulacean acid metabolism in Mesembryanthemum crystallinum leaves during normal and NaCl-induced ageing.] — Planta 107: 227–237, 1972. [In German]

    Article  PubMed  CAS  Google Scholar 

  • Wada S., Ishida H., Izumi M. et al.: Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. — Plant Physiol. 149: 885–893, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L., Liang W., Xing J. et al.: Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. — J. Proteome Res. 12: 5124–5136, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Wang P., Song C.P.: Guard-cell signalling for hydrogen peroxide and abscisic acid. — New Phytol. 178:703–718, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y., Chu Y., Liu G. et al.: Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. — J. Plant Physiol. 164: 78–89, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y., Nii N.: Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. — J. Hortic. Sci. Biotechnol. 75: 623–627, 2000.

    Article  CAS  Google Scholar 

  • Williams B.P., Aubry S., Hibberd J.M.: Molecular evolution of genes recruited into C(4) photosynthesis. — Trends Plant Sci. 17: 213–220, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Willows R.D., Li Y., Scheer H. et al.: Structures of chlorophyll f. — Org. Lett. 15: 1588–90, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Wu H., Shabala L., Barry K. et al.: Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. — Physiol. Plantarum 149: 515–527, 2013.

    Article  CAS  Google Scholar 

  • Yamane K., Taniguchi M., Miyake H.: Salinity-induced subcellular accumulation of H2O2 in leaves of rice. — Protoplasma 249: 301–308, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Yamori W., Shikanai T.: Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. — Annu. Rev. Plant Biol. 67:81–106, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Yang C., Zhao L., Zhang H. et al.: Evolution of physiological responses to salt stress in hexaploid wheat. — P. Natl. Acad. Sci. USA 12: 11882–11887, 2014.

    Article  CAS  Google Scholar 

  • Yi X., Sun Y., Yang Q. et al.: Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. — J Proteomics 99: 84–100, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T., Mogami J., Yamaguchi-Shinozaki K.: ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. — Curr. Opin. Plant Biol. 21: 133–139, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Yu Y., Assmann S.M.: The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. — Plant Signal. Behav. 11: e1085275, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Lai J., Sun S. et al.: Comparison analysis of transcripts from the halophyte Thellungiella halophila. — J. Integr. Plant Biol. 50: 1327–1335, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y.M., Ma H.L., Calderón-Urrea A. et al.: Anatomical changes to protect organelle integrity account for tolerance to alkali and salt stresses in Melilotus officinalis. — Plant Soil 406: 327–340, 2016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pareek.

Additional information

Acknowledgements: S. Wungrampha and R. Joshi would like to thank the award of Senior Research Fellowship and Dr. D S Kothari Post Doctoral Fellowship, respectively, from the University Grant Commission, India. A. Pareek acknowledges University with Potential of Excellence (UPE-II), Jawaharlal Nehru University, for financial assistance. Research in the lab of A. Pareek is also supported by funds received from International Atomic Energy Agency (Vienna), India-NWO, DBT, and Indo-US Science and Technology Forum (IUSSTF), New, Delhi. This review article is dedicated to Professor Govindjee who taught us the alphabet of photosynthesis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wungrampha, S., Joshi, R., Singla-Pareek, S.L. et al. Photosynthesis and salinity: are these mutually exclusive?. Photosynthetica 56, 366–381 (2018). https://doi.org/10.1007/s11099-017-0763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0763-7

Additional key words

Navigation