, Volume 56, Issue 1, pp 244–253 | Cite as

Photooxidation and photoreduction of exogenous cytochrome c by photosystem II preparations after various modifications of the water-oxidizing complex

  • A. A. Khorobrykh
  • D. V. Yanykin
  • V. V. Klimov


The redox interaction of exogenous cytochrome c550 (Cyt) with PSII isolated from spinach was studied. Illumination of PSII particles in the presence of Cyt led to: (1) Cyt photooxidation by PSII reaction center (demonstrated at the first time), (2) Cyt photoreduction via O2−• photoproduced on the acceptor side of PSII, and (3) Cyt photoreduction by reduced electron carriers of PSII. A step-by-step removal of components of water-oxidizing complex was accompanied by the appearance of Cyt photooxidation, an increase in the superoxide dismutase (SOD)-dependent Cyt photoreduction (related to O2−• formation), and a decrease in the SOD-independent Cyt photoreduction. Re-addition of PsbO protein diminished the Cyt-induced restoration of electron transfer in PSII. Addition of diuron led to inhibition of these photoprocesses, while exogenous Mn2+ inhibited only the Cyt c photooxidation. The results can be important for correct measurements of O2−• photoproduction in PSII and for elucidation of the role of cytochrome c550 in cyanobacterial PSII.

Additional key words

cytochrome c photooxidation photoreduction photosystem II superoxide anion radical 









the primary electron donor of PSII


pheophytin (the primary electron acceptor of PSII)


reaction center


superoxide dismutase


redox active tyrosine residue 161 of D1 protein


water-oxidizing complex


photoinduced changes of chlorophyll fluorescence yield of PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2017_762_MOESM1_ESM.pdf (214 kb)
Supplementary material, approximately 214 KB.
11099_2017_762_MOESM2_ESM.pdf (148 kb)
Supplementary material, approximately 147 KB.


  1. Allakhverdiev S.I., Tomo T., Shimada Y. et al.: Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls.–P. Natl. Acad. Sci. USA 107: 3924–3929, 2010.CrossRefGoogle Scholar
  2. Allakhverdiev S.I., Tsuchiya T., Watabe K. et al.: Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d.–P. Natl. Acad. Sci. USA 108: 8054–8058, 2011.CrossRefGoogle Scholar
  3. Ananyev G., Renger G., Wacker U. et al.: The photoproduction of superoxide radicals and the superoxide dismutase activity of Photosystem II. The possible involvement of cytochrome b559.–Photosynth. Res. 41: 327–338, 19CrossRefPubMedGoogle Scholar
  4. Asada K., Kiso K., Yoshikawa K.: Univalent reduction of molecular oxygen by spinach chloroplasts on illumination.–J. Biol. Chem. 249: 2175–2181, 1974.PubMedGoogle Scholar
  5. Bishop N.I., Nakamura H., Blatt J. et al.: Kinetics and properties of cytochrome c photooxidase of spinach.–Plant Physiol. 34: 551–557, 1959.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brinkert K., De Causmaecker S., Krieger-Liszkay A. et al.: Bicarbonate-induced redox tuning in photosystem II for regulation and protection.–P. Natl. Acad. Sci. USA 113: 12144–12149, 2016.CrossRefGoogle Scholar
  7. Butler J., Jayson G.G., Swallow A.J.: The reaction between the superoxide anion radical and cytochrome c.–Biochim. Biophys. Acta. 408: 215–222, 1975.CrossRefPubMedGoogle Scholar
  8. Chen G.X., Kazimir J., Cheniae G.M.: Photoinhibition of hydroxylamine extracted photosystem II membranes: studies of the mechanism.–Biochemistry 31: 11072–11083, 1992.CrossRefPubMedGoogle Scholar
  9. Cole J.L, Yachandra V.K., McDermott A.E et al.: Structure of the manganese complex of photosystem II upon removal of the 33-kilodalton extrinsic protein: an x-ray absorption spectroscopy study.–Biochemistry 26: 5967–5973, 1987.CrossRefPubMedGoogle Scholar
  10. Ford R.C., Evans M.C.W.: Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity.–FEBS Lett. 160: 159–164, 1983.CrossRefGoogle Scholar
  11. Fridovich I.: Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase.–J. Biol. Chem. 245: 4053–4057, 1970.PubMedGoogle Scholar
  12. Ghanotakis D.F., Topper J.N., Babcock G.T. et al.: Watersoluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity binding site for Ca2+ on the oxidizing side of Photosystem II.–FEBS Lett 170: 169–173, 1984.CrossRefGoogle Scholar
  13. Gray B., Carmichael A.J.: Kinetics of superoxide scavenging by dismutase enzymes and manganese mimics determined by electron spin resonance.–Biochem. J. 281: 795–802, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ishikita H., Loll B., Biesiadka J. et al.: Redox potentials of chlorophylls in the photosystem II reaction center.–Biochemistry 44: 4118–4124, 2005.CrossRefPubMedGoogle Scholar
  15. Johnson G.N., Rutherford A.W., Krieger A.: A change in the midpoint potential of the quinone QA in photosystem II associated with photoactivation of oxygen evolution.–BBABioenergetics 1229: 201–207, 1995.Google Scholar
  16. Kerfeld C.A., Krogmann D.W.: Photosynthetic cytochromes c in cyanobacteria, algae and plants.–Annu. Rev. Plant Phys. 49: 397–425, 1998.CrossRefGoogle Scholar
  17. Khorobrykh S.A., Ivanov B.N.: Oxygen reduction in a plastoquinone pool of isolated pea thylakoids.–Photosynth. Res. 71: 209–219, 2002.CrossRefPubMedGoogle Scholar
  18. Klimov V.V., Allakhverdiev S.I., Demeter S. et al.: Photoreduction of pheophytin in chloroplast photosystem II as a function of the redox potential of the medium.–Dokl. AN SSSR 249: 227–230, 1979. [In Russian]Google Scholar
  19. Klimov V.V., Allakhverdiev S.I., Feyziev Ya.M. et al.: Bicarbonate requirement for the donor side of photosystem II.–FEBS Lett. 363: 251–255, 1995.CrossRefPubMedGoogle Scholar
  20. Klimov V.V., Allakhverdiev S.I., Shuvalov V.A. et al.: Effect of extraction and re-addition of manganese on light reactions of photosystem II preparations.–FEBS Lett. 148: 307–312, 1982.CrossRefPubMedGoogle Scholar
  21. Kok B., Rurainski H.J., Harmon E.A.: Photooxidation of cytochromes c, f, and plastocyanin by detergent treated chloroplasts.–Plant Physiol. 39: 513–520, 1964.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Koppenol W.H., van Buuren K.J.H, Buffer J. et al..: The kinetics of the reduction of cytochrome c by the superoxide radical.–Biochim. Biophys. Acta 449:157–168, 1976.CrossRefPubMedGoogle Scholar
  23. Krieger A., Weis E.: Energy-dependent quenching of chlorophyll a fluorescence: The involvement of proton-calcium exchange at photosystem II.–Photosynthetica 27: 89–98, 1992.Google Scholar
  24. Krieger A., Rutherford A.W., Johnson G.N.: On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in photosystem II.–Biochim Biophys Acta 1229: 193–201, 1995.CrossRefGoogle Scholar
  25. Kruk J., Strzałka K.: Redox changes of cytochrome b559 in the presence of plastoquinones.–J. Biol. Chem. 276: 86–91, 2001.CrossRefPubMedGoogle Scholar
  26. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  27. Miyao M., Murata N.: Partial disintegration and reconstitution of the photosynthetic oxygen evolution system. Binding of 24 kilodalton and 18 kilodalton polypeptides.–BBABioenergetics 725: 87–93, 1983.CrossRefGoogle Scholar
  28. Mizusawa N., Miyao M., Yamashita T.: Restoration of the highpotential form of cytochrome b-559 by electron transport reactions through photosystem II in Tris-trated photosystem II membranes.–BBA-Bioenergetics 1318: 145–158, 1997.CrossRefGoogle Scholar
  29. Nakatani H.Y.: Photosynthetic oxygen evolution does not require the participation of polypeptides of 16 and 24 kilodaltons.–Biochem. Biophys. Res. Co. 120: 299–304, 1984.CrossRefGoogle Scholar
  30. Nelson N., Nelson H., Racker E.: Photoreaction of FMN-tricine and its participation in photophosphorylation.–Photochem. Photobiol. 16: 481–489, 1972.CrossRefPubMedGoogle Scholar
  31. Nieman H., Vennesland B.: Photoreduction and photooxidation of pytochrome c by spinach chloroplast preparations.–Plant Physiol. 34: 255–262, 1959.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nieman R.H., Nakamura H., Vennesland B.: Fractionation and purification of cytochrome c photooxidase of spinach.–Plant Physiol. 34: 262–267, 1959.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ono T., Inoue Y.: Mn-preserving extraction of 33-, 24- and 16 kDa proteins from O2-evolving PS II particles by divalent saltwashing.–FEBS Lett 164: 255–260, 1983.CrossRefGoogle Scholar
  34. Pobeguts O.V., Smolova T.N., Timoshevsky D.S. et al.: Interaction of bicarbonate with the manganese-stabilizing protein of photosystem II.–J. Photoch. Photobio. B. 100: 130–137, 2010.CrossRefGoogle Scholar
  35. Pospíšil P., Šnyrychová I., Kruk J. et al.: Evidence that cytochrome b559 is involved in superoxide production in photosystem II: effect of synthetic short-chain plastoquinones in a cytochrome b559 tobacco mutant.–Biochem. J. 397: 321–327, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rappaport F., Diner B.A.: Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II.–Coord. Chem. Rev. 252: 259–272, 2008.CrossRefGoogle Scholar
  37. Rappaport F., Guergova-Kuras M., Nixon P.J. et al.: Kinetics and pathways of charge recombination in Photosystem II.–Biochemistry 41: 8518–8527, 2002.CrossRefPubMedGoogle Scholar
  38. Roncel M., Kirilovsky D., Guerrero F. et al.: Photosynthetic cytochrome c550.–Biochim. Biophys. Acta 1817: 1152–1163, 2012.CrossRefPubMedGoogle Scholar
  39. Seki H., llan Y.A., Ban Y. et al.: Reactions of the ferriferrocytochrome c system with superoxide/oxygen and CO2–/CO2 studied by fast pulse radiolyses.–Biochim. Biophys. Acta 440: 573–586, 1976.CrossRefPubMedGoogle Scholar
  40. Seibert M., Cotton T.M., Metz J.G.: Surface-enhanced Raman scattering spectroscopy: Probing the lumenal surface of Photosystem II membranes for evidence of manganese.–BBA-Bioenergetics 934: 235–246, 1988.CrossRefGoogle Scholar
  41. Shen J.-R., Inoue Y.: Cellular localization of cytochrome c 550. Its specific association with cyanobacterial photosystem II. — J. Biol. Chem. 268: 20408–20413, 1993.PubMedGoogle Scholar
  42. Shen J.-R., Qian M., Inoue Y. et al.: Functional characterization of Synechocystis sp. 6803 ΔpsbU and ΔpsbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. — Biochemistry 37: 1551–1558, 1998.CrossRefPubMedGoogle Scholar
  43. Shibamoto T, Kato Y. Nagao R. et al.: Species-dependence of the redox potential of the primary quinone electron acceptor QA in photosystem II verified by spectroelectrochemistry. — FEBS Lett. 584: 1526–1530, 2010.CrossRefPubMedGoogle Scholar
  44. Tamura N., Cheniae G.M.: Photoactivation of the water-oxidizing complex in Photosystem II membranes depleted of Mn and extrinsic proteins. I. Biochemical and kinetic characterization. — BBA-Bioenergetics 890: 179–194, 1987.CrossRefGoogle Scholar
  45. Vandewalle P.L., Petersen N.O.: Oxidation of reduced cytochrome c by hydrogen peroxide. Implications for superoxide assays. — FEBS Lett. 210: 195–198, 1987.CrossRefPubMedGoogle Scholar
  46. Wood P.M.: The redox potential of the system oxygen—superoxide. — FEBS Lett 44: 23–24, 1974.CrossRefGoogle Scholar
  47. Yamamoto Y., Ishikawa Y., Nakatani E. et al.: Role of an extrinsic 33 kilodalton protein of photosystem ii in the turnover of thereaction center-binding protein d1 during photoinhibition. — Biochemistry 37: 1565–1574, 1998.CrossRefPubMedGoogle Scholar
  48. Yamamoto Y., Akasaka T.: Degradation of antenna chlorophyll-binding protein CP43 during photoinhibition of Photosystem II. — Biochemistry 34: 9038–9045, 1995.CrossRefPubMedGoogle Scholar
  49. Yanykin D.V., Khorobrykh A.A., Mamedov M.D. et al.: Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments. — J. Photoch. Photobio. B. 152: 279–285, 2015.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • A. A. Khorobrykh
    • 1
  • D. V. Yanykin
    • 1
  • V. V. Klimov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations