Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 275–278 | Cite as

The deep red state of photosystem II in Cyanidioschyzon merolae

  • J. Langley
  • J. Morton
  • R. Purchase
  • L. Tian
  • L. Shen
  • G. Han
  • J.-R. Shen
  • E. Krausz
Brief Communication

Abstract

We identified and characterised the deep red state (DRS), an optically-absorbing charge transfer state of PSII, which lies at lower energy than P680, in the red algae Cyanidioschyzon merolae by means of low temperature absorption and magnetic circular dichroism spectroscopies. The photoactive DRS has been previously studied in PSII of the higher plant Spinacia oleracea, and in the cyanobacterium Thermosynechococcus vulcanus. We found the DRS in PSII of C. merolae has similar spectral properties. Treatment of PSII with dithionite leads to reduction of cytochrome (cyt) b559 and the PsbV-based cyt c550 as well as the disassembly of the oxygen-evolving complex. Whereas the overall visible absorption spectrum of PSII was little affected, the DRS absorption in the reduced sample was no longer seen. This bleaching of the DRS is discussed in terms of a corresponding lack of a DRS feature in D1D2/cyt b559 reaction centre preparations of PSII.

Additional key words

optical spectra photosynthesis 

Abbreviation

Chl

chlorophyll

cyt

cytochrome

DRS

deep red state

MCD

magnetic circular dichroism

OD

optical density

OEC

oxygen-evolving complex

RC

reaction centre

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi H., Umena Y., Enami I. et al.: Towards structural elucidation of eukaryotic photosystem II: Purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga.–BBA-Bioenergetics 1787: 121–128, 2009.CrossRefPubMedGoogle Scholar
  2. Ago H., Adachi H., Umena Y. et al.: Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga.–J. Biol. Chem. 291: 5676–5687, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Butler W.L., Okayama S.: The photoreduction of C-550 in chloroplasts and its inhibition by lipase.–BBA-Bioenergetics 245: 237–239, 1971.CrossRefPubMedGoogle Scholar
  4. Cox N., Hughes J.L., Steffen R. et al.: Identification of the QY excitation of the primary electron acceptor of photosystem II: CD determination of its coupling environment.–J. Phys. Chem. B 113: 12364–12374, 2009.CrossRefPubMedGoogle Scholar
  5. Enami I., Okumura A., Nagao R. et al.: Structures and functions of the extrinsic proteins of photosystem II from different species.–Photosynth. Res. 98: 349–363, 2008.CrossRefPubMedGoogle Scholar
  6. Hughes J.L., Cox N., Rutherford A.W. et al.: D1 protein variants in Photosystem II from Thermosynechococcus elongatus studied by low temperature optical spectroscopy.–BBABioenergetics 1797: 11–19, 2010.CrossRefGoogle Scholar
  7. Hughes J.L., Rutherford A.W., Sugiura M. et al.: Quantum efficiency distributions of photo-induced side-pathway donor oxidation at cryogenic temperature in photosystem II.–Photosynth. Res. 98: 199–206, 2008.CrossRefPubMedGoogle Scholar
  8. Hughes J.L., Smith P., Pace R. et al.: Charge separation in photosystem II core complexes induced by 690-730 nm excitation at 1.7 K.–BBA-Bioenergetics 1757: 841–851, 2006.CrossRefPubMedGoogle Scholar
  9. Hughes J.L., Smith P.J., Pace R.J. et al.: Low energy absorption and luminescence of higher plant photosystem II core samples.–J. Lumin. 122-123: 284–287, 2007.CrossRefGoogle Scholar
  10. Ifuku K.: Localization and functional characterization of the extrinsic subunits of photosystem II: an update.–Biosci. Biotech. Bioch. 79: 1223–1231, 2015.CrossRefGoogle Scholar
  11. Krausz E.: Selective and differential optical spectroscopies in photosynthesis.–Photosynth. Res. 116: 411–426, 2013.CrossRefPubMedGoogle Scholar
  12. Krausz E., Cox N., Arsköld S.P.: Spectral characteristics of PS II reaction centres: as isolated preparations and when integral to PS II core complexes.–Photosynth. Res. 98: 207–217, 2008.CrossRefPubMedGoogle Scholar
  13. Krausz E., Hughes J.L., Smith P. et al.: Oxygen-evolving photosystem II core complexes: A new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence.–Photoch. Photobio. Sci. 4: 744–753, 2005.CrossRefGoogle Scholar
  14. Krupnik T., Kotabová E., van Bezouwen L.S. et al: A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae.–J. Biol. Chem. 288: 23529–23542, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Morton J., Akita F., Nakajima Y. et al.: Optical identification of the long-wavelength (700–1700 nm) electronic excitations of the native reaction centre, Mn4CaO5 cluster and cytochromes of photosystem II in plants and cyanobacteria.–BBABioenergetics 1847: 153–161, 2015.CrossRefGoogle Scholar
  16. Morton J., Hall J., Smith P. et al.: Determination of the PS I content of PS II core preparations using selective emission: A new emission of PS II at 780 nm.–BBA-Bioenergetics 1837: 167–177, 2014.CrossRefPubMedGoogle Scholar
  17. Morton J., Chrysina M., Craig V. et al.: Structured Near-Infrared Magnetic Circular Dichroism spectra of the Mn4CaO5 cluster of PS II in T. vulcanus are dominated by Mn(IV) d-d’ spin-flip’ transitions.–BBA-Bioenergetics 1859: 88–98, 2018.CrossRefPubMedGoogle Scholar
  18. Nanba O., Satoh K.: Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559.–P. Natl. Acad. Sci. USA 84: 109–112, 1987.CrossRefGoogle Scholar
  19. Nilsson H., Krupnik T., Kargul J. et al.: Substrate water exchange in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae.–BBA-Bioenergetics 1837: 1257–1262, 2014.CrossRefPubMedGoogle Scholar
  20. Pettai H., Oja V., Freiberg A. et al.: Photosynthetic activity of far-red light in green plants.–BBA-Bioenergetics 1708: 311–321, 2005.CrossRefPubMedGoogle Scholar
  21. Piepho S.B., Schatz P.N.: Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism. Wiley-Interscience, New York, Chichester, Brisbane, Toronto, Singapore 1983.Google Scholar
  22. Reimers J.R., Biczysko M., Bruce D. et al.: Challenges facing an understanding of the nature of low-energy excited states in photosynthesis.–BBA-Bioenergetics 1857: 1627–1640, 2016.CrossRefPubMedGoogle Scholar
  23. Schlodder E., Lendzian F., Meyer J. et al.: Long-wavelength limit of photochemical energy conversion in photosystem I.–J. Am. Chem. Soc. 136: 3904–3918, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shen J.R.: The structure of photosystem II and the mechanism of water oxidation in photosynthesis.–Annu. Rev. Plant Biol. 66: 23–48, 2015.CrossRefPubMedGoogle Scholar
  25. Suga M., Akita F., Hirata K. et al.: Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses.–Nature 517: 99–103, 2015.CrossRefPubMedGoogle Scholar
  26. Umena Y., Kawakami K., Shen J.-R. et al.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • J. Langley
    • 1
  • J. Morton
    • 1
  • R. Purchase
    • 1
  • L. Tian
    • 2
  • L. Shen
    • 2
  • G. Han
    • 2
  • J.-R. Shen
    • 2
    • 3
  • E. Krausz
    • 1
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijingChina
  3. 3.Research Institute for Interdisciplinary Science and Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations