Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 418–426 | Cite as

Response of photosynthetic apparatus in Arabidopsis thaliana L. mutant deficient in phytochrome A and B to UV-B

  • V. D. Kreslavski
  • A. N. Shmarev
  • V. Yu. Lyubimov
  • G. A. Semenova
  • S. K. Zharmukhamedov
  • G. N. Shirshikova
  • A. Yu. Khudyakova
  • S. I. Allakhverdiev
Article

Abstract

The effects of UV-B radiation (1 W m–2, 1 and 2 h) on PSII activity, chloroplast structure, and H2O2 contents in leaves of 26-d-old Arabidopsis thaliana phyA phyB double mutant (DMut) compared with the wild type (WT) were investigated. UV-B decreased PSII activity and affected the H2O2 content in WT and DMut plants grown under white light (WL). The chloroplast structure changes in DMut plants exposed to UV were more significant than that in WT. Reductions in maximal and real quantum photochemical yields and increase in the value of thermal dissipation of absorbed light energy per PSII RC and the amount of QB-nonreducing centers of PSII were bigger in mutant compared to WT plants grown both under WL and red light. Such difference in action of UV-B on WT and DMut can be explained by higher content of UV-absorbing pigments and carotenoids in WT leaves compared with DMut.

Additional key words

chloroplast structure fluorescence of Chl a photosystem II phytochrome mutants stress ultraviolet 

Abbreviations

Chl

chlorophyll

DMut

phytochrome A, phytochrome B mutant

FRL

far-red light

PFR

active form of phytochrome

PA

photosynthetic apparatus

Phy(P)

phytochrome

RC

reaction center

RL

red light

ROS

reactive oxygen species

WL

white light

WT

wild type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allakhverdiev S.I.: Recent progress in the studies of structure and function of photosystem II.–J. Photoch. Photobio. B 104: 1–8, 2011.CrossRefGoogle Scholar
  2. Allakhverdiev S.I., Klimov V.V., Carpentier R.: Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound.–Biochemistry 36: 4149–4154, 1997.CrossRefPubMedGoogle Scholar
  3. Allakhverdiev S.I., Los D.A., Mohanty P. et al.: Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition.–Biochim. Biophys. Acta 1767: 1363–1371, 2007.CrossRefPubMedGoogle Scholar
  4. Andersson B., Aro E.-M.: Photodamage and D1 protein turnover in photosystem II.–In: Aro E.-M., Andersson B. (ed.): Regulation of Photosynthesis. Pp. 377–393. Kluwer Acad. Publ., Dordrecht 2001.Google Scholar
  5. Biswal B., Joshi P.N., Kulandaivelu G.: Changes in leaf protein and pigment contents and photosynthetic activities during senescence of detached maize leaves influence of different ultraviolet radiations.–Photosynthetica 34: 37–44, 1997.CrossRefGoogle Scholar
  6. Boccalandro H.E., Ploschuk E.L., Yanovsky M.J. et al.: Increased phytochrome B alleviates density effects on tuber yield of field potato crops.–Plant Physiol. 133: 1539–1546, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boccalandro H.E., Rugnone M.L., Moreno J.E. et al.: Phytochrome B enhances photosynthesis at the expense of water use efficiency in Arabidopsis.–Plant Physiol. 150: 1083–1092, 20CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brown B.A., Jenkins G.I.: UV-B signalling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8. HY5: and HYH.–Plant Physiol. 146: 576–588, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carvalho R.F., Campos M.L., Azevedo R.A.: The role of phytochrome in stress tolerance.–J. Integr. Plant Biol. 53: 920–929, 2011.CrossRefPubMedGoogle Scholar
  10. Carvalho R.F., Moda L.R., Silva G.P. et al.: Nutrition in tomato (Solanum lycopersicum L) as affected by light: revealing a new role of phytochrome.–Aust. J. Crop Sci. 10: 331–335, 2016.CrossRefGoogle Scholar
  11. Casal J.J.: Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants.–Photoch. Photobio. B 71: 1–11, 2000.CrossRefGoogle Scholar
  12. Casal J.J., Sánchez R.A., Botto J.F.: Modes of action of phytochromes.–J. Exp. Bot. 49: 127–138, 1998.Google Scholar
  13. Cormier M.J., Prichard P.M.: An investigation of the mechanism of the luminescent peroxidation of luminol by stopped flow techniques.–J. Biol. Chem. 243: 4706–4714, 1968.PubMedGoogle Scholar
  14. Foreman J., Johansson H., Hornitschek P. et al.: Light receptor action is critical for maintaining plant biomass at warm ambient temperatures.–Plant J. 65: 441–452, 2011.CrossRefPubMedGoogle Scholar
  15. Franklin K.A., Whitelam G.C.: Light-quality regulation of freezing tolerance in Arabidopsis thaliana.–Nat. Genet. 39: 1410–1413, 20CrossRefPubMedGoogle Scholar
  16. Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus.–Russ. J. Plant Physl+ 63: 869–893, 2016.CrossRefGoogle Scholar
  17. Gutierrez L., Mauriat M., Guénin S. et al.: The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plant.–Plant Biotech. J. 6: 609–618, 2008.CrossRefGoogle Scholar
  18. Hu W., Franklin K.A., Sharrock R.A. et al.: Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis.–P. Natl. Acad. Sci. USA 110: 1542–1547, 2013.CrossRefGoogle Scholar
  19. Jenkins G.I.: The UV-B photoreceptor UVR8: from structure to physiology.–Plant Cell. 26: 21–37, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jiao Y., Lau O.S., Deng X.W.: Light-regulated transcriptional networks in higher plants.–Nat. Rev. Genet. 8: 217–230, 2007.CrossRefPubMedGoogle Scholar
  21. Joshi P.N., Biswal B., Biswal V.C.: Effect of UV-A on aging of wheat leaves and role of phytochrome.–Environ. Exp. Bot. 31: 267–276, 1991.CrossRefGoogle Scholar
  22. Kaiserli E, Chory J.: The role of phytochromes in triggering plant developmental transitions.–eLS. DOI: 10.1002/ 9780470015902.a0023714, 2016Google Scholar
  23. Kalaji H.M., Golstev V., Bosa K. et al.: Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker.–Photosynth. Res. 114: 69–96, 2012.CrossRefPubMedGoogle Scholar
  24. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues.–Photosynth. Res. 122: 121–158, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kataria S., Jajoo A., Guruprasad K.N.: Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes.–J. Photoch. Photobio. B. 137: 55–66, 2014.CrossRefGoogle Scholar
  26. Khudyakova A.Yu., Kreslavski V.D., Shirshikova G.N. et al.: thaliana L. photosynthetic apparatus to UV-B is reduced by deficit of phytochromes B and A.–J. Photoch. Photobio. B. 169: 41–46, 2017.CrossRefGoogle Scholar
  27. Klinkovský T., Nauš J.: Sensitivity of the relative Fpl level of chlorophyll fluorescence induction in leaves to the heat stress.–Photosynth. Res. 39: 201–204, 1994.CrossRefPubMedGoogle Scholar
  28. Kreslavski V.D., Carpentier R., Klimov V.V. et al.: Molecular mechanisms of stress resistance of the photosynthetic apparatus.–Biochemistry-Moscow+ 1: 185–205, 2007.Google Scholar
  29. Kreslavski V.D., Lyubimov V.Y., Shirshikova G.N. et al.: Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A.–J. Photoch. Photobio. B 122: 1–6, 2013b.CrossRefGoogle Scholar
  30. Kreslavski V.D., Kosobryukhov A.A., Shmarev A.N. et al.: Introduction of the Arabidopsis PHYB gene increases resistance of photosynthetic apparatus in transgenic Solanum tuberosum plants to UV-B radiation.–Russ. J. Plant Physl+ 62: 204–209, 2015.CrossRefGoogle Scholar
  31. Kreslavski V.D., Kosobryukhov A.A., Schmitt F.J. et al.: Photochemical activity and the structure of chloroplasts in Arabidopsis thaliana L. mutants deficient in phytochrome A and B.–Protoplasma 254: 1283–1293, 2017.CrossRefPubMedGoogle Scholar
  32. Kreslavski V. D., Khristin M. S., Shabnova N. I., Lyubimov V. Yu.: Preillumination of excised spinach leaves with red light increases resistance of photosynthetic apparatus to UV radiation.–Russ. J. Plant Physiol. 59: 717–723, 2012.CrossRefGoogle Scholar
  33. Kreslavski V.D., Shirshikova G.N., Lyubimov V.Y. et al.: Effect of preillumination with red light on photosynthetic parameters and oxidant-/antioxidant balance in Arabidopsis thaliana in response to UV-A.–J. Photoch. Photobio. B 127: 229–236, 2013a.CrossRefGoogle Scholar
  34. Kreslavski V.D., Schmitt F.J., Keuer C. et al.: Response of the photosynthetic apparatus to UV-A and red light in the phytochrome B-deficient Arabidopsis thaliana L. hy3 mutant.–Photosynthetica 54: 321–330, 2016.CrossRefGoogle Scholar
  35. Kreslavski V.D., Carpentier R., Klimov V.V. et al.: Transduction mechanisms of photoreceptor signals in plant cells (review).–J. Photoch. Photobio. C 10: 63–80, 2009.CrossRefGoogle Scholar
  36. Lankin A.V., Kreslavski V.D., Khudyakova A.Yu. et al.: Effect of naphthalene on photosystem 2 photochemical activity of pea plants.–Biochemistry-Moscow+ 79: 1216–1225, 2014.CrossRefPubMedGoogle Scholar
  37. Larocca N., Barbato R., Casadoro G., Rascio N.: Eearly degradation of photosynthetic membranes in carob and sunflower cotyledons.–Physiol. Plantarum 96: 513–518, 1996.CrossRefGoogle Scholar
  38. Lichtenthaler H.K., Wellburn A.R.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  39. Lingakumar K., Kulandaivelu G.: Regulatory role of phytochrome on ultraviolet-B (280–315 nm) induced changes in growth and photosynthetic activities of Vigna sinensis L.–Photosynthetica 29: 341–351, 1993.Google Scholar
  40. Markovskaya E.F., Kosobryukhov A.A., Kreslavski V.D.: Photosynthetic machinery response to low temperature stress.–In: Allakhverdiev S.I. (ed.): Photosynthesis: New Approaches to the Molecular, Cellular, and Organismal Levels. Pp. 355–382. Scrivener Publishing LLC, Beverly 2016.Google Scholar
  41. Mirecki R.M., Teramura A.H.: Effect of ultraviolet B irradiance on soybean. The dependence of plant sensitivity on photosynthesis flux density during and after leaf expansion.–Plant Physiol. 74: 475–480, 1984.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mohanty P., Allakhverdiev S.I., Murata N.: Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II.–Photosynth. Res. 94: 217–224, 2007.CrossRefPubMedGoogle Scholar
  43. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress.–BBA-Bioenergetics 1767: 414–421, 2007.CrossRefPubMedGoogle Scholar
  44. Park C.-M., Song P.-S.: Structure and function of the phytochromes: light regulation of plant growth and development.–J. Photosci. 10: 157–164, 2003.Google Scholar
  45. Parks B.M., Quail P.H.: Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis.–Plant Cell 3: 1177–1186, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Quail P.H.: Phytochrome-regulated gene expression.–J. Integ. Plant Biol. 49: 11–20, 2007.CrossRefGoogle Scholar
  47. Quail P.H.: Phytochromes.–Curr. Biol. 20: R504–R507, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rao A.Q., Irean M., Saleem Z. et al.: Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum).–J. Zhejiang Univ-Sci B (Biomed & Biotechnol). 12: 326–334, 2011.CrossRefGoogle Scholar
  49. Rastogi R.P., Richa, Kumar A. et al.: Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair.–J. Nucl. Acids 2010: 593980, 2010.CrossRefGoogle Scholar
  50. Rusaczonek A., Czarnocka W., Kacprzak S. et al.: Role of phytochromes A and B in the regulation of cell death and acclimatory responses to UV stress in Arabidopsis thaliana.–J. Exp. Bot. 66: 6679–6695, 2015CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sato N., Terasawa K., Miyajima K., Kabe Y.: Organization, developmental dynamics, and evolution of plastid nucleoids.–Int. Rev. Cyt. 232: 217–262, 2003.CrossRefGoogle Scholar
  52. Sellaro R., Hoecker U., Yanovsky M. et al.: Synergistic interactions of red and blue light in the control of Arabidopsis gene expression and development.–Curr. Biol. 19: 1216–1220, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Semenova G.A., Romanova A.K.: Crystals in sugar beet (Beta vulgaris L.) leaves.–Cell Tissue Biol. 5: 74–80, 2011.CrossRefGoogle Scholar
  54. Shapiguzov A., Lyukevich A.A., Allakhverdiev S.I. et al.: Osmotic shrinkage of cells of Synechocystis sp. PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression.–Microbiology 151: 447–455, 2005.CrossRefPubMedGoogle Scholar
  55. Sineshchekov V.A.: Photoreceptors in plants: structural and functional heterogeneity of phytochrome A (invited review).–Chem. Phys. Res. J. 2: 1–46, 2010.Google Scholar
  56. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP-test.–In: Mathis P. (ed.): Photosynthesis: from Light to Biosphere, Vol. V. Pp. 977–980. Kluwer, Dordrecht 1995.Google Scholar
  57. Strasser R.J., Tsimilli-Michael M., Srivastava A.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M., Pather U., Mohanly P. (ed.): Probing Photosynthesis: Mechanisms. Regulation and Adaptation. Pp. 445–483. Taylor and Francis, ondon 2000.Google Scholar
  58. Strasser B., Sánchez-Lamas M., Yanovsky M.J. et al.: Arabidopsis thaliana life without phytochromes.–P. Natl. Acad. Sci. USA 107: 4776–4781, 2010.CrossRefGoogle Scholar
  59. Thiele A., Herold M., Lenk I. et al.: Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber–Plant Physiol. 120: 73–81, 1999CrossRefPubMedPubMedCentralGoogle Scholar
  60. Whitelam G.C., Devlin P.F.: Roles of different phytochromes in Arabidopsis photomorphogenesis.–Plant Cell Environ. 20: 752–758, 1997.CrossRefGoogle Scholar
  61. Zhao J., Zhou J.-J., Wang Y.-Y. et al.: Positive regulation of phytochrome B on chlorophyll biosynthesis and chloroplast development in rice.–Rice Sci. 20: 243–248, 2013.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • V. D. Kreslavski
    • 1
    • 2
  • A. N. Shmarev
    • 1
  • V. Yu. Lyubimov
    • 1
  • G. A. Semenova
    • 3
  • S. K. Zharmukhamedov
    • 1
    • 2
  • G. N. Shirshikova
    • 1
  • A. Yu. Khudyakova
    • 1
    • 2
  • S. I. Allakhverdiev
    • 1
    • 2
    • 4
    • 5
    • 6
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Controlled Photobiosynthesis Laboratory, Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  4. 4.Department of Plant PhysiologyFaculty of Biology, M.V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Institute of Molecular Biology and BiotechnologyAzerbaijan National Academy of SciencesBakuAzerbaijan
  6. 6.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia

Personalised recommendations