Abstract
Tomato samples were collected from the field of Absheron peninsula in Azerbaijan in order to evaluate the incidence of main Tobamoviruses. According to results of serological and molecular tests, Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), and Pepper mild mottle virus (PMMoV) were detected as single and mixed infections (TMV + PMMoV; ToMV + PMMoV) in various tomato samples. It was found that Tobamovirus infection caused an increase in the content of malondialdehyde, alterations in the activities of peroxidase enzymes and quantitative and qualitative changes in their molecular isoforms. A comparison of thylakoid membrane polypeptides from virus-infected leaves indicated a decrease in the content of the thylakoid membrane polypeptides with molecular masses of 123, 55, 47, 33, 28–24, 17, and 15 kD. PSII efficiency and the content of chlorophylls (a and b) were significantly lower in the virus-infected leaves.
This is a preview of subscription content,
to check access.Abbreviations
- APO:
-
ascorbate peroxidase
- BPO:
-
benzidine-type peroxidase
- Chl:
-
chlorophyll
- CMV:
-
Cucumber mosaic virus
- F0 :
-
initial values of chlorophyll fluorescence
- Fm :
-
maximal values of chlorophyll fluorescence
- Fv/Fm :
-
maximal quantum efficiency of PSII
- GPO:
-
guaiacol-type peroxidase
- LPO:
-
lipid peroxidation
- PMMoV:
-
Pepper mild mottle virus
- ROS:
-
reactive oxygen species
- TMV:
-
Tobacco mosaic virus
- ToMV:
-
Tomato mosaic virus
- TSWV:
-
Tomato spotted wilt virus
References
Aliyev J., Suleymanov S., Guseinova I. et al.: Effect of specific translation inhibitors on polypeptide composition and spectral characteristics of wheat thylakoid membrane.–Biochemistry 57: 679–686, 1992.
Bertamini M., Grando M.S., Muthuchelian K. et al.: Effect of phytoplasmal infection on PSII efficiency and thylakoid membrane protein changes in field grown apple (Malus Pumila) leaves.–Physiol. Mol. Plant Pathol. 61: 349–356, 2003.
Blancard D., Laterrot H., Marchoux G. et al.: A Colour Handbook–Tomato Diseases: Identification, Biology and Control. Pp. 688. Manson Publishing Limited, London 2012.
Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein using the principles of dyebinding.–Anal. Biochem. 72: 143–147, 1976.
Broadbent L.: Epidemiology and control of tomato mosaic virus.–Annu. Rev. Phytopathol. 14: 75–96, 1976.
Christov I., Stefanov D., Velinov T. et al.: The symptomless leaf infection with grapevine leafroll associated virus 3 in grown in vitro plants as a simple model system for investigation of viral effects on photosynthesis.–Plant Physiol. 164: 1124–1133, 2005.
Clarke S.F., Guy P.L., Burritt D.J. et al.: Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment.–Plant Physiol. 114: 157–164, 2002.
Cuypers A., Vangronsveld J., Ciijsters H.: Peroxidases in roots and primary leaves of Pharsalus vulgaris copper and zinc phytotoxicity: a comparison.–Plant Physiol. 159: 869–876, 2002.
Da Costa M., Huang B.: Changes in antioxidant enzyme activities and lipid peroxidation for bent grass species in response to drought stress.–J. Am. Soc. Hortic. Sci. 132: 319–326, 2007.
Davis B.: Disc electrophoresis. I. Method and application to human serum proteins.–Ann. NY Acad. Sci. 121: 404–427, 1964.
De Gara L., De Pinto M.C., Tommasi F.: The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction.–Plant Physiol. Bioch. 41: 863–870, 2003.
Díaz-Vivancos P., Clemente-Moreno M.J., Rubio M. et al.: Alteration in the chloroplast metabolism leads to ROS accumulation in pea plants in response to plum pox virus.–J. Exp. Bot. 59: 2147–2160, 2008.
Díaz-Vivancos P., Rubio M., Mesonero V. et al.: The apoplastic antioxidant system in Prunus: response to plum pox virus.–J. Exp. Bot. 57: 3813–3824, 2006.
Gechev T., Gadjiev I., van Breusegem E. et al.: Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes.–Cell Mol. Life Sci. 59: 708–714, 2002.
Gullner G., Künstler A., Király L. et al.: Up-regulated expression of lipoxygenase and divinyl ether synthase genes in pepper leaves inoculated with Tobamoviruses.–Physiol. Mol. Plant Pathol. 74: 387–393, 2010.
Heath RL., Packer L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.–Arch. Physiol. Biochem. 125: 189–198, 1968.
Helepciuca F.E., Mitoia M.E., Manole-Paunescua A. et al.: Induction of plant antioxidant system by interaction with beneficial and/or pathogenic microorganisms.–Roman. Biotech. Lett. 19: 9366–9375, 2014.
Hernández J.A., Díaz-Vivancos P., Rubio M. et al.: Long-term PPV infection produces an oxidative stress in a susceptible apricot cultivar but not in a resistant cultivar.–Physiol. Plantarum 126: 140–152, 2006.
Huseynova I.M. Sultanova N.F., Aliyev J.A.: Histochemical visualization of ROS and antioxidant response to viral infections of vegetable crops grown in Azerbaijan.–Plant Physiol. Bioch. 81: 26–35, 2014.
Huseynova I.M., Aliyeva D.R., Mammadov A.Ch. et al.: Hydrogen peroxide generation and antioxidant enzyme activities in the leaves and roots of wheat cultivars subjected to long-term soil drought stress.–Photosynth. Res. 125: 279–289, 2015.
Klimov V.V., Allakhverdiev S.I., Shuvalov V.A. et al.: Effect of extraction and re-addition of manganese on light reactions of Photosystem II preparations.–FEBS Lett. 148: 307–312, 1982.
Kumar G., Knowles N.: Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme during aging and sprouting of potato (Solanum tuberosum L.) seed-tubers.–Plant Physiol. 102: 115–124, 1993.
Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.–Nature 227: 680–685, 1970.
Lucas J.A.: Plant Pathology and Plant Pathogens, 3rd ed. Pp. 151. Blackwell Science, Oxford 1998.
Mahalingam R., Shah N., Scrymgeour A. et al.: Temporal evolution of the Arabidopsis oxidative stress response.–Plant Mol. Biol. 57: 709–730, 2005.
McKinney G.: Absorption of light by chlorophyll solutions.–Biol. Chem. 140: 315–322, 1941.
Mittler R., Zilinskas B.A.: Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium.–Anal. Biochem. 212: 540–546, 1993.
Mydlarz L.D., Harvell C.D.: Peroxidase activity and inducibility in the see fan coral exposed to a fungal pathogen.–Comp. Biochem. Phys. A 146: 54–62, 2007.
Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell. Physiol. 22: 867–880, 1981.
Nath K., Jajoo A., Sharma R. et al.: Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions.–FEBS Lett. 587: 3372–3381, 2013.
Oliveira J.T.A., Barreto A.L.H., Vasconcelos I.M. et al.: Role of antioxidant enzymes, hydrogen peroxide and PR proteins in the compatible and incompatible interactions of cowpea (Vigna unguiculata) genotypes with the fungus colletotrichum gloeosporioides.–J. Plant Physiol. Pathol. 2: 3, 2014.
Onda Y.: Oxidative protein-folding systems in plant cells.–Int. J. Cell Biol. 2013: 44–59, 2013.
Pandey H.C., Baig M.J., Chandra A. et al.: Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena.–J. Environ. Biol. 31: 435–440, 2010.
Pérez-Bueno M.L., Ciscato M., VandeVen M. et al.: Imaging viral infection. Studies on Nicotiana benthamiana plants infected with the Pepper mild mottle tobamovirus.–Photosynth. Res. 90: 11–24, 2006.
Pineda M., Sajnani C., Barón M.: Changes induced by the pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana.–Photosynth. Res. 103: 31–45, 2010.
Radotic K., Ducic T., Mutavdžić D.: Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium.–Environ. Exp. Bot. 44: 105–113, 2000.
Radwan D.E.M., Fayez K.A., Mahmoud S.Y. et al.: Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments.–Plant Physiol. Bioch. 45: 480–489, 2007.
Rahoutei J., García-Luque I., Barón M.: Inhibition of photosynthesis by viral infection: effect on PSII structure and function.–Physiol. Plantarum 110: 286–292, 2000.
Rao G.S., Rao Reddy N.N., Surekha C.: Induction of plant systemic resistance in legumes Cajanus cajan, Vigna radiata, Vigna mingo against plant pathogens Fusarium oxysporum and Alternaria altermata–a Trichoderma viride mediated reprogramming of plant defense mechanism.–Int. J. Recent Sci. Res. 6: 4270–4280, 2015.
Riedle-Bauer M.: Role of reactive oxygen species and antioxidant enzymes in systemic virus infections of plants.–J. Phytopathol. 148: 297–302, 2000.
Roca M., Minguez-Mosquera M.I.: Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content.–Physiol. Plantarum 117: 459–466, 2003.
Rys M., Juhász C., Surówka E. et al.: Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FTRaman spectroscopy.–Plant Physiol. Bioch. 83: 267–278, 2014.
Sairam R.K., Deshmukh P.S., Shukla D.S.: Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat.–J. Agron. Crop Sci. 178: 171–178, 1997.
Sajnani C., Zurita J.Z., Roncel M. et al.: Changes in photosynthetic metabolism induced by tobamovirus infection in Nicotiana benthamiana studied in vivo by chlorophyll thermoluminescence.–New Phytol. 175: 120–130, 2007.
Sofy A.R., Mahfouze S.A., El-Enany M.A.M.: Isozyme markers for response of wild potato species to potato spindle tuber viroid Egyptian isolate.–World Appl. Sci. J. 27: 1010–1022, 2013.
Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition?–Trend. Plant Sci. 13: 178–182, 2008.
Torres M.A., Jones J.D.G., Dangl J.L.: Reactive oxygen species signaling in response to pathogens.–Plant Physiol. 141: 373–378, 2006.
Yi S., Yu S., Choi D.: Involvement of hydrogen peroxide in repression of catalase in TMV-infected resistant tobacco.–Mol. Cells 15: 364–369, 2003.
Author information
Authors and Affiliations
Corresponding author
Additional information
Acknowledgment: This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan — Grant № EIF-2014-9(24)-KETPL-14/11/3 and Grant № EIF/GAM-3-2014-6(21)-24/15/3.
Rights and permissions
About this article
Cite this article
Huseynova, I.M., Mirzayeva, S.M., Sultanova, N.F. et al. Virus-induced changes in photosynthetic parameters and peroxidase isoenzyme contents in tomato (Solanum lycopersicum L.) plants. Photosynthetica 56, 841–850 (2018). https://doi.org/10.1007/s11099-017-0737-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11099-017-0737-9