Comparative studies of compatible and incompatible pepper–Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide

Abstract

The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves.

Abbreviations

BR:

brassinosteroid

Chl:

chlorophyll

dpi:

days after inoculation

ETC:

electron transport chain

hpi:

hours after inoculation

ObPV:

Obuda pepper virus

PMMoV:

Pepper mild mottle virus

PRI:

physiological reflectance index

RC:

reaction center

ROS:

reactive oxygen species

RWC:

relative water content

SIPI:

structure insensitive pigment index

UDP:

uracildiphosphate glucose

WBI:

water band index

24-epi-BR:

24-epibrassinolide

References

  1. Almási A., Harsányi A., Gáborjányi R.: Photosynthetic alterations of virus infected plants.–Acta Phytopathol. Hun. 36: 15–29, 2001.

    Article  Google Scholar 

  2. Balachandran S., Osmond C.B., Makino A.: Effects of two strains of tobacco mosaic virus on photosynthetic characteristics and nitrogen partitioning in leaves of Nicotiana tabacum cv Xanthi during photoacclimation under two nitrogen nutrition regimes.–Plant Physiol. 104: 1043–1050, 1994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Baron M., Rahoutei J., Lazaro J. et al.: Photosystem II response to biotic and abiotic stress.–In: Mathis P. (ed.): Photosynthesis from Light to Biosphere. Pp. 897–901. Kluwer Academic Publishers, The Hague 1995.

    Google Scholar 

  4. Critchley J.H., Zeeman S.C., Takaha T. et al.: A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis.–Plant J. 26: 89–100, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Dobrikova A.G., Vladkova R.S., Rashkov G.D. et al.: Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions.–Plant Physiol. Bioch. 80: 75–82, 2014.

    Article  CAS  Google Scholar 

  6. Demmig-Adams B., Adams W.W. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.–Trends Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  7. Elbein A.D., Pan Y.T., Pastuszak I. et al.: New insights on trehalose: a multifunctional molecule.–Glycobiology 13: 17R-27R, 2003.

  8. El Sayed A.I., Rafudeen M.S., Golldack D.: Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress.–Plant Biol. 16: 1–8, 2014.

    Google Scholar 

  9. Filella I., Amaro T., Araus J.L. et al.: Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI).–Physiol. Plantarum 96: 211–216, 1996.

    Article  CAS  Google Scholar 

  10. Funayama S., Sonoike K., Terashima I.: Photosynthetic properties of leaves of Eupatorium makinoi infected by a geminivirus.–Photosynth. Res. 52: 253–261, 1997.

    Article  Google Scholar 

  11. Gamon J.A., Peñuelas J., Field C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.–Remote Sens. Environ. 41: 35–44, 1992.

    Article  Google Scholar 

  12. Gamon J.A., Serrano L., Surfus J.: The photochemical reflectance index: an optical indicator of photosynthetic radiation-use efficiency across species, functional types and nutrient levels.–Oecologia 112: 492–501, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation.–Biochim. Biophys. Acta 1817: 1490–1498, 2012.

    Article  PubMed  CAS  Google Scholar 

  14. Gonçalves M. C., Vega J., Oliveira J.G. et al.: Sugarcane yellow leaf virus infection leads to alterations in photosynthetic efficiency and carbohydrate accumulation in sugarcane leaves.–Fitopatol. Bras. 30: 10–16, 2005.

    Article  Google Scholar 

  15. Gómez-Ariza J., Campo S., Rufat M. et al.: Sucrose-mediated priming of plant defence responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants.–Mol. Plant Microbe In. 20: 832–842, 2007.

    Article  CAS  Google Scholar 

  16. Grunwald C.: Sterol molecular modifications influencing membrane permeability.–Plant Physiol. 54: 624–628, 1974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Guo Y.P., Zhou H.F., Zeng G.H. et al.: [Effects of high temperature stress on photosynthetic rate and photosystem II activity in citrus.]–Chin. J. Appl. Ecol. 14: 867–870, 2003. [In Chinese]

    CAS  Google Scholar 

  18. Gururani M. A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.–Mol. Plant 8: 1304–1320, 2015.

    Article  PubMed  CAS  Google Scholar 

  19. Hendry G.A.F. Evolutionary origins and natural functions of fructans–a climatological, biogeographic and mechanistic appraisal.–New Phytol. 123: 3–14, 1993.

    Article  CAS  Google Scholar 

  20. Herbers K., Meuwly P., Métraux J.P.: Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage.–FEBS Lett. 397: 239–244, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Herbers K., Sonnewald U.: Altered gene expression brought about by inter-and intracellularly formed hexoses and its possible implications for plant-pathogen interactions.–J. Plant Res. 111: 323–328, 1998.

    Article  CAS  Google Scholar 

  22. Herbers K., Takahata Y., Melzer M. et al.: Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco.–Mol. Plant Pathol. 1: 51–59, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Holá D.: Brassinosteroids and photosynthesis.–In: Hayat S., Ahmad A. (ed.): Brassinosteroids: a Class of Plant Hormone. Pp. 143–192. Springer, Dordrecht, Heidelberg, New York 2011.

    Google Scholar 

  24. Janeczko A., Koscielniak J., Pilipowicz M. et al.: Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress.–Photosynthetica 43: 293–298, 2005.

    Article  CAS  Google Scholar 

  25. Janeczko A., Biesaga-Koscielniak J., Okleštková J. et al.: Role of 24-epibrassinolide in wheat production: physiological effects and uptake.–J. Agron. Crop Sci. 196: 311–321, 2010.

    CAS  Google Scholar 

  26. Janeczko A., Okleštková J., Pociecha E. et al.: Physiological effects and transport of 24-epibrassinolide in heat-stressed barley.–Acta Physiol. Plant. 33: 1249–1259, 2011.

    Article  CAS  Google Scholar 

  27. Janeczko A., Gruszka D., Pociecha E. et al.: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis.–Plant Physiol. Bioch. 99: 126–141, 2016.

    Article  CAS  Google Scholar 

  28. Juhász C., Tóbiás I., Ádám A.L. et al.: Pepper 9-and 13-lipoxygenase genes are differentially activated by two tobamoviruses and by hormone treatments.–Physiol. Mol. Plant P. 92: 59–69, 2015.

    Article  CAS  Google Scholar 

  29. Kaplan F., Guy C.L.: Beta-Amylase induction and the protective role of maltose during temperature shock.–Plant Physiol. 135: 1674–1684, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Knipling E.B.: Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.–Remote Sens. Environ. 1: 155–159, 1970.

    Article  Google Scholar 

  31. Koch K.E.: Carbohydrate-modulated gene expression in plants.–Annu. Rev. Plant Phys. 47: 509–540, 1996.

    Article  CAS  Google Scholar 

  32. Krezhova D., Dikova B., Maneva S.: Ground based hyperspectral remote sensing for disease detection of tobacco plants.–Bulg. J. Agric. Sci. 20: 1142–1150, 2014.

    Google Scholar 

  33. Livingston D.P. III, Henson C.A.: Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening.–Plant Physiol. 116: 403–408, 1998.

    Article  PubMed Central  CAS  Google Scholar 

  34. Livingston D.P. III, Hincha D.K., Heyer A.G.: Fructan and its relationship to abiotic stress tolerance in plants.–Cell. Mol. Life Sci. 66: 2007–2023, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lucas W.J., Olesinski A., Hull R.J. et al.: Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants.–Planta 190: 88–96, 1993.

    Article  CAS  Google Scholar 

  36. Moghaddam B.M.R, van den Ende W.: Sugars and plant innate immunity.–J. Exp. Bot. 63: 3989–3998, 2012.

    Article  CAS  Google Scholar 

  37. Müller J., Aeschbacher R.A., Sprenger N. et al.: Disaccharidemediated regulation of sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves.–Plant Physiol. 123: 265–274, 2000.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.–Photosynth. Res. 94: 275–290, 2007.

    Article  PubMed  CAS  Google Scholar 

  39. Peñuelas J., Filella I., Biel C. et al.: The reflectance at the 950-970 nm region as an indicator of plant water status.–Int. J. Remote Sens. 14: 1887–1905, 1993.

    Article  Google Scholar 

  40. Peñuelas J., Gamon J.A., Fredeen A.L. et al.: Reflectance indices associated with physiological changes in nitrogen-and waterlimited sunflower leaves.–Remote Sens. Environ. 48: 135–146, 1994.

    Article  Google Scholar 

  41. Peñuelas J., Filella I., Baret F.: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectra reflectance.–Photosynthetica 31: 221–230, 1995a.

    Google Scholar 

  42. Peñuelas J., Filella I., Gamon J.A.: Assessment of photosynthetic radiation-use efficiency with spectral reflectance.–New Physiol. 131: 291–296, 1995b.

    Article  Google Scholar 

  43. Peñuelas J., Isla R., Filella I. et al.: Visible and near-infrared reflectance assessment of salinity effects on barley.–Crop Sci. 37: 198–202, 1997.

    Article  Google Scholar 

  44. Pérez-Bueno M.L., Rahoutei J., Sajnani C. et al.: Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses.–Proteomics 4: 418–425, 2004.

    Article  PubMed  CAS  Google Scholar 

  45. Rahoutei J., Barón M., García-Luque I. et al.: Effect of tobamovirus infection on thermoluminescence characteristics of chloroplasts from infected plants.–Z. Naturforsch. C 54: 634–639, 1999.

    Article  CAS  Google Scholar 

  46. Rahoutei J., García-Luque I., Barón M.: Inhibition of photosynthesis by viral infection: effect on PSII structure and function.–Physiol. Plantarum 110: 286–292, 2000.

    Article  CAS  Google Scholar 

  47. Roitsch T., Balibrea M.E., Hofmann M. et al.: Extracellular invertase: key metabolic enzyme and PR protein.–J. Exp. Bot. 54: 513–524, 2003.

    Article  PubMed  CAS  Google Scholar 

  48. Rolland F., Baena-Gonzalez E., Sheen J.: Sugar sensing and signaling in plants: conserved and novel mechanisms.–Annu. Rev. Plant Biol. 57: 675–709, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Rys M., Juhász C., Surowka E. et al.: Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy.–Plant Physiol. Bioch. 83: 267–278, 2014.

    Article  CAS  Google Scholar 

  50. Ryšlavá H., Müller K., Semorádová S. et al.: Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y.–Photosynthetica 41: 357–363, 2003.

    Article  Google Scholar 

  51. Shalitin D., Wolf S.: Cucumber mosaic virus infection affects sugar transport in melon plants.–Plant Physiol. 123: 597–604, 2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Skoczowski A., Janeczko A., Gullner G. et al.: Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescens.–J. Therm. Anal. Calorim. 104: 131–139, 2011.

    Article  CAS  Google Scholar 

  53. Smeekens S., Ma J., Hanson J. et al.: Sugar signals and molecular networks controlling plant growth.–Curr. Opin. Plant Biol. 13: 274–279, 2010.

    Article  PubMed  CAS  Google Scholar 

  54. Solovchenko A.: Quantification of screening pigments and their efficiency in situ.–In: Solovchenko A. (ed.): Photoprotection in Plants. Pp. 119–141. Springer Series in Biophysics 14, Springer-Verlag, Berlin, Heidelberg 2010.

    Google Scholar 

  55. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetics samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.

    Google Scholar 

  56. Strasser R.J., Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis.–Biochim. Biophys. Acta 1797: 1313–1326, 2010.

    Article  PubMed  CAS  Google Scholar 

  57. Tauzin A.S., Giardina T.: Sucrose and invertases, a part of the plant defense response to the biotic stresses.–Front. Plant Sci. 5: 293, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tóbiás I., Fraser R.S.S., Gerwitz A.: The gene-for-gene relationship between Capsicum annuum L. and tobacco mosaic virus: effects on virus multiplication, ethylene synthesis and accumulation of pathogenesis-related proteins.–Physiol. Mol. Plant Pathol. 35: 271–286, 1989.

    Article  Google Scholar 

  59. Velasco L., Janssen D., Ruiz-Garcia L. et al.: The complete nucleotide sequence and development of a diferential detection assay for a pepper mild mottle virus (PMMoV) isolate that overcomes L 3 resistance in pepper.–J. Virol. Methods 106: 135–140, 2002.

    Article  PubMed  CAS  Google Scholar 

  60. Wang Z-Y.: Brassinosteroids modulate plant immunity at multiple levels.–P. Natl. Acad. Sci. USA 109: 7–8, 2012.

    Article  Google Scholar 

  61. Yuan L., Shu S., Sun J. et al.: Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress.–Photosynth. Res. 112: 205–214, 2012.

    Article  PubMed  CAS  Google Scholar 

  62. Yusuf M., Fariduddin Q., Ahmad I. et al.: Brassinosteroidmediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel.–Physiol. Mol. Biol. Plants 20: 449–460, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Janeczko.

Additional information

Acknowledgment: We thank Dr. Lajos Zatykó (Research Institute of Vegetable Crops, Budatétény, Hungary) for kindly providing the pepper seeds. The experiments were conducted within a bilateral cooperation project between the Polish and Hungarian Academy of Sciences during 2013–2016. The financial support of the Hungarian Scientific Research Fund (OTKA K83615) is gratefully acknowledged.

This article is published with open access at link.springer.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janeczko, A., Dziurka, M., Gullner, G. et al. Comparative studies of compatible and incompatible pepper–Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide. Photosynthetica 56, 763–775 (2018). https://doi.org/10.1007/s11099-017-0725-0

Download citation

Additional key words

  • brassinosteroids
  • CO2 assimilation
  • systemic virus response
  • water band index
  • xanthophyll cycle