Skip to main content
Log in

Overexpression of calmodulin gene fragment from Antarctic notothenioid fish improves chilling tolerance in Nicotiana benthamiana

  • Original papers
  • Published:
Photosynthetica

Abstract

Calmodulin (CaM) is a highly conserved calcium sensor protein associated with chilling tolerance in living organisms. It has four EF-hand domains for binding of four Ca2+, two of them located in the N-terminus, and the other two in the C-terminus. A notothenioid CaM gene fragment (CaMm), which only codes for N-terminus of CaM (with two EF-hand domains), was introduced into Nicotiana benthamiana. Effects of its overexpression on chilling tolerance in plants were explored. During 4◦C or 0◦C chilling treatment, both CaMm and CaM transgenic plants showed higher PSII maximum quantum yield, actual quantum yield, and soluble protein content, lower electrolyte leakage and malondialdehyde content than that of the control. The changes in these physiological indices were comparable between the CaMm and CaM transgenic plants during the treatments. These results indicate that the N-terminus of calmodulin is likely the key functional domain involved in the adaptive response to cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaM:

calmodulin

DOT:

days of treatment

EL:

electrolyte leakage

Fo :

minimal fluorescence yield of the darkadapted state

Fo':

minimal fluorescence yield of the light-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fm':

maximal fluorescence yield of the light-adapted state

Fs :

steady-state fluorescence yield

Fv :

variable fluorescence

Fv/Fm :

maximum photochemical efficiency of PSII

FM:

fresh mass

MDA:

malondialdehyde

ROS:

reactive oxygen species

RT-PCR:

reverse transcription-PCR

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

ФPSII :

actual photochemical efficiency of PSII

References

  • Alam B., Jacob J.: Overproduction of photosynthetic electrons is associated with chilling injury in green leaves. — Photosynthetica 40: 91–95, 2002.

    Article  CAS  Google Scholar 

  • An G.: Binary ti vectors for plant transformation and promoter analysis. — Method Enzymol. 153: 292–305, 1987.

    Article  CAS  Google Scholar 

  • Arnold K., Bordoli L., Kopp J. et al.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. — Bioinformatics 22: 195–201, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Babu Y.S., Sack J.S., Greenhough T.J. et al.: Three-dimensional structure of calmodulin. — Nature 315: 37–40, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Bates L., Waldren R., Teare I. et al.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Batistič O., Kudla J.: Analysis of calcium signaling pathways in plants. — Biochim. Biophys. Acta 1820: 1283–1293, 2012.

    Article  PubMed  Google Scholar 

  • Bauer P., Elbaum R., Weiss I.M.: Calcium and silicon mineralization in land plants: Transport, structure and function. — Plant Sci. 180: 746–756, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Benkert P., Biasini M., Schwede T.: Toward the estimation of the absolute quality of individual protein structure models. — Bioinformatics 27: 343–350, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Biasini M., Bienert S., Waterhouse A. et al.: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.–Nucleic Acids Res. 42: W252–W258, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E., Santella L., Branca D. et al.: Generation, control, and processing of cellular calcium signals. — Crit. Rev. Biochem. Mol. 36: 107–260, 2001.

    Article  CAS  Google Scholar 

  • Chen Z., Cheng C.-H.C., Zhang J. et al.: Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. — P. Natl. Acad. Sci. USA 105: 12944–12949, 2008.

    Article  CAS  Google Scholar 

  • Doherty C.J., van Buskirk H.A., Myers S.J. et al.: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. — Plant Cell 21: 972–984, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faas G.C., Raghavachari S., Lisman J.E. et al.: Calmodulin as a direct detector of Ca2+ signals. — Nat. Neurosci. 14: 301–304, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Graham D., Patterson B.D.: Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. — Annu. Rev. Plant Phys. 33: 347–372, 1982.

    Article  CAS  Google Scholar 

  • Johnson J.D., Snyder C., Walsh M. et al.: Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N-and Cterminal Ca2+ binding sites of calmodulin. — J. Biol. Chem. 271: 761–767, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Keen J.E., Khawaled R., Farrens D.L. et al.: Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. — J. Neurosci. 19: 8830–8838, 1999.

    CAS  PubMed  Google Scholar 

  • Kink J.A., Maley M.E., Preston R.R. et al.: Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. — Cell 62: 165–174, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Knight M.R., Knight H.: Low-temperature perception leading to gene expression and cold tolerance in higher plants. — New Phytol. 195: 737–751, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Koç E., İslek C., Üstün A.S.: Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. — Gazi Univ. J. Sci. 23: 1–6, 2010.

    Google Scholar 

  • Kretsinger R.H., Nockolds C.E.: Carp muscle calcium-binding protein II. Structure determination and general description. — J. Biol. Chem. 248: 3313–3326, 1973.

    CAS  PubMed  Google Scholar 

  • Kuboniwa H., Tjandra N., Grzesiek S. et al.: Solution structure of calcium-free calmodulin. — Nat. Struct. Biol. 2: 768–776, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Kwon S., Jeong Y., Lee H.: Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologenmediated oxidative stress. — Plant Cell Environ. 25: 873–882, 2002.

    Article  Google Scholar 

  • Lin K.H., Hwang W.C., Lo H.F.: Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. — Photosynthetica 45: 628–632, 2007.

    Article  CAS  Google Scholar 

  • Linse S., Forsén S.: Determinants that govern high-affinity calcium binding. — Adv. Sec. Mess. Phosph. 30: 89–151, 1995.

    Article  CAS  Google Scholar 

  • Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. — Methods 25: 402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Malabadi R.B., van Staden J.: Cold-enhanced somatic embryogenesis in Pinus patula is mediated by calcium. — S. Afr. J. Bot. 72: 613–618, 2006.

    Article  CAS  Google Scholar 

  • Minami A., Nagao M., Ikegami K. et al.: Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. — Planta 220: 414–423, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress. — BBABioenergetics 1767: 414–421, 2007.

    Article  CAS  Google Scholar 

  • Nelson M.R., Chazin W.J.: Structures of EF-hand Ca2+-binding proteins: diversity in the organization, packing and response to Ca2+ binding. — Biometals 11: 297–318, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Orlova I.V., Serebriiskaya, T.S., Popov V. et al.: Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. — Plant Cell Physiol. 44: 447–450, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Parvanova D., Popova A., Zaharieva I. et al.: Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. — Photosynthetica 42: 179–185, 2004.

    Article  CAS  Google Scholar 

  • Payton P., Webb R., Kornyeyev D.: Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. — J. Exp. Bot. 52: 2345–2354, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T., Hess M.W., Mäkelä P. et al.: Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. — Plant Mol. Biol. 54: 743–753, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Reddy A.S., Ali G.S., Celesnik H. et al.: Coping with stresses: roles of calcium and calcium/calmodulin-regulated gene expression. — Plant Cell 23: 2010–2032, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy A.S.: Calcium: silver bullet in signaling. — Plant Sci. 160: 381–404, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y., Hata S., Kyozuka J. et al.: Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/ drought tolerance on rice plants. — Plant J. 23: 319–327, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Saimi Y., Kung C.: Ion channel regulation by calmodulin binding. — FEBS Lett. 350: 155–158, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Wang F., Feng G., Chen K. et al.: Burdock fructooligosaccharide induces resistance to tobacco mosaic virus in tobacco seedlings. — Physiol. Mol. Plant P. 74: 34–40, 2009.

    Article  CAS  Google Scholar 

  • Wang H., Jin J.Y.: Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. — Photosynthetica 43: 591–596, 2005.

    Article  CAS  Google Scholar 

  • Wassenegger M., Heimes S., Riedel L. et al.: RNA-directed de novo methylation of genomic sequences in plants. — Cell 76: 567–576, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Yang N., Peng C., Cheng D. et al.: The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. — Gene 521: 32–37, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Yang T., Chaudhuri S., Yang L.: A calcium/calmodulinregulated member of the receptor-like kinase family confers cold tolerance in plants. — J. Biol. Chem. 285: 7119–7126, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Zehra A., Gul B., Ansari R. et al.: Role of calcium in alleviating effect of salinity on germination of Phragmites karka seeds. — S. African J. Bot. 78: 122–128, 2012.

    Article  CAS  Google Scholar 

  • Zhang Q., Zhang J.Z., Chow W.S. et al.: The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. — Photosynthetica 49: 201–208, 2011.

    Article  CAS  Google Scholar 

  • Zhang Z., Huang R.: Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. — Plant Mol. Biol. 73: 241–249, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. L. Peng or L. B. Chen.

Additional information

Acknowledgments: The valuable help of Prof. Dao-Wen Wang (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China) and his useful suggestions were gratefully acknowledged. This work was supported by the grants: the 973 program (2010CB126304) from Ministry of Science and Technology of China, the National Natural Science Foundation of China (31570398, 31270287), and the International Collaborative Polar Exploration Grant from CHINARE to Liang-Biao Chen.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T.J., Pan, L.J., Huang, Q. et al. Overexpression of calmodulin gene fragment from Antarctic notothenioid fish improves chilling tolerance in Nicotiana benthamiana . Photosynthetica 55, 630–637 (2017). https://doi.org/10.1007/s11099-016-0682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0682-z

Additional key words

Navigation