Skip to main content
Log in

Predictive capability of a leaf optical meter for determining leaf pigment status during senescence

  • Original Paper
  • Published:
Photosynthetica

Abstract

We conducted an experiment to assess the predictive capability of a leaf optical meter for determining leaf pigment status of Acer mono Maxim., A. ginnala Maxim., Quercus mongolica Fisch., and Cornus alba displaying a range of visually different leaf colors during senescence. Concentrations of chlorophyll (Chl) a, Chl b, and total Chl [i.e., Chl (a+b)] decreased while the concentration of carotenoids (Car) remained relatively static for all species as leaf development continued from maturity to senescence. C. alba exhibited the lowest average concentration of Chl (a+b), Chl a, and Car, but the highest relative anthocyanin concentration, while Q. mongolica exhibited the highest Chl (a+b), Chl b, and the lowest relative anthocyanin concentration. A. mono exhibited the highest Chl a and Car concentrations. The relationships between leaf pigments and the values measured by the optical meter generally followed an exponential function. The strongest relationships between leaf pigments and optical measurements were for A. mono, A. ginnala, and Q. mongolica (R 2 ranged from 0.64 to 0.95), and the weakest relationships were for C. alba (R 2 ranged from 0.13 to 0.67). Moreover, optical measurements were more strongly related to Chl a than to Chl b or Chl (a+b). Optical measurements were not related to Car or relative anthocyanin concentrations. We predicted that weak relationships between leaf pigments and optical measurements would occur under very low Chl concentrations or under very high anthocyanin concentrations; however, these factors could not explain the weak relationship between Chl and optical measurements observed in C. alba. Overall, our results indicated that an optical meter can accurately estimate leaf pigment concentrations during leaf senescence — a time when pigment concentrations are dynamically changing — but that the accuracy of the estimate varies across species. Future research should investigate how species-specific leaf traits may influence the accuracy of pigment estimates derived from optical meters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ag:

Acer ginnala

Am :

Acer mono

Ant:

anthocyanin

Ca :

Cornus alba

CAnt :

relative anthocyanin concentration

Car:

carotenoids

Chl:

chlorophyll

DMSO:

dimethylsulphoxide

DOY:

day of year

FM:

fresh mass

MAT:

minimum air temperature

OD:

optical density readings

Q m :

Quercus mongolica

R 2 :

coefficient of determination

SPAD:

unitless value obtained with the SPAD502 optical meter

References

  • Anand M.H., Byju G.: Chlorophyll meter and leaf colour chart to estimate chlorophyll content, leaf colour, and yield of cassava.–Photosynthetica 46: 511–516, 2008.

    Article  Google Scholar 

  • Ban Y., Mitani N., Hayashi T. et al.: Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera).–Euphytica 198: 101–114, 2014.

    Article  CAS  Google Scholar 

  • Biber P.D.: Evaluating a chlorophyll content meter on three coastal wetland plant species.–J. Agr. Food Environ. Sci. 1: 1–11, 2007.

    Google Scholar 

  • Burnham K.P., Anderson D.R.: Model Selection and Inference: A Practical Information-Theoretic Approach. Pp. 487. Springer-Verlag, New York 1998.

    Book  Google Scholar 

  • Cai Z.Q., Slot M., Fan Z.X.: Leaf development and photosynthetic properties of three tropical tree species with delayed greening.–Photosynthetica 43: 91–98, 2005.

    Article  CAS  Google Scholar 

  • Cate T.M., Perkins T.D.: Chlorophyll content monitoring in sugar maple (Acer saccharum).–Tree Physiol. 23: 1077–1079, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Chang S.X., Robison D.J.: Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter.–Forest Ecol. Manage. 181: 331–338, 2003.

    Article  Google Scholar 

  • Coste S., Baraloto C., Leroy C. et al.: Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana.–Ann. Forest Sci. 67: 607, 2010.

    Article  Google Scholar 

  • de Jesus S.V., Marenco R.A.: The SPAD-502 as alternative for determining chlorophyll content in fruit tree species.–Acta Amaz. 38: 815–818, 2008.

    Article  Google Scholar 

  • Diaz C., Saliba-Colombani V., Loudet O. et al.: Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana.–Plant Cell Physiol. 47: 74–83, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Dwyer L.M., Tollenaar M., Houwing L.: A nondestructive method to monitor leaf greenness in corn.–Can. J. Plant Sci. 71: 505–509, 1991.

    Article  Google Scholar 

  • Fanizza G., della Gatta C., Bagnulo C.: A non-destructive determination of leaf chlorophyll in Vitis vinifera.–Ann. Appl. Biol. 119: 203–205, 1991.

    Article  Google Scholar 

  • Feild T.S., Lee D.W., Holbrook N.M.: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of redosier dogwood.–Plant Physiol. 127: 566–574, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X.Y., Zhou L.Y., Huang J.B. et al.: Relating photosynthetic performance to leaf greenness in litchi: A comparison among genotypes.–Sci. Hortic.-Amsterdam 152: 16–25, 2013.

    Article  CAS  Google Scholar 

  • Fuleki T., Francis F.J.: Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries.–J. Food Sci. 33: 72–77, 1968.

    Article  CAS  Google Scholar 

  • Gitelson A.A., Viña A., Verma S.B. et al.: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity.–J. Geophys. Res. 111: 1–15, 2006.

    Article  Google Scholar 

  • Hawkins T.S., Gardiner E.S., Comer G.S.: Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research.–J. Nat. Conserv. 17: 123–127, 2009.

    Article  Google Scholar 

  • Hlavinka J., Nauš J., Špundová M.: Anthocyanin contribution to chlorophyll meter readings and its correction.–Photosynth. Res. 118: 277–295, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Hosseinian F.S., Li W.D., Beta T.: Measurement of anthocyanins and other phytochemicals in purple wheat.–Food Chem. 109: 916–924, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Jifon J.L., Syvertsen J.P., Whaley E.: Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus sp. leaves.–J. Am. Soc. Hortic. Sci. 130: 152–158, 2005.

    Google Scholar 

  • Kaakeh W., Pfeiffer D.G., Marini R.P.: Combined effects of Spirea aphid (Homoptera: Aphididae) and nitrogen fertilization on net photosynthesis, total chlorophyll content, and greenness of apple leaves.–J. Econ. Entomol. 85: 939–946, 1992.

    Article  Google Scholar 

  • Kenward M.G., Roger J.H.: Small sample inference for fixed effects from restricted maximum likelihood.–Biometrics 53: 983–997, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Knapp A.K., Carter G.A.: Variability in leaf optical properties among 26 species from a broad range of habitats.–Am. J. Bot. 85: 940–946, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Landi M., Tattini M., Gould K.S.: Multiple functional roles of anthocyanins in plant-environment interactions.–Environ. Exp. Bot. 119: 4–17, 2015.

    Article  CAS  Google Scholar 

  • Lazcano C.A., Yoo K.S., Pike L.M.: A method for measuring anthocyanins after removing carotenes in purple colored carrots.–Sci. Hortic.-Amsterdam 90: 321–324, 2001.

    Article  CAS  Google Scholar 

  • Lee J., Rennaker C., Wrolstad R.E.: Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods.–Food Chem. 110: 782–786, 2008.

    Article  CAS  Google Scholar 

  • Ling Q.H., Huang W.H., Jarvis P.: Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana.–Photosynth. Res. 107: 209–214, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Mancinelli A.L.: Photoregulation of anthocyanin synthesis. VIII. Effect of light pre-treatments.–Plant Physiol. 75: 447–453, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manetas Y., Grammatikopoulos G., Kyparissis A.: The use of the portable, non-destructive, SPAD-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content.–J. Plant Physiol. 153: 513–516, 1998.

    Article  CAS  Google Scholar 

  • Marenco R.A., Antezana-Vera S.A., Nascimento H.C.S.: Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species.–Photosynthetica 47: 184–190, 2009.

    Article  Google Scholar 

  • Markwell J., Osterman J.C., Mitchell J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter.–Photosynth. Res. 46: 467–472, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Martínez D.E., Guiamet J.J.: Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status.–Agronomie 24: 41–46, 2004.

    Article  Google Scholar 

  • Mielke M.S., Schaffer B., Li C.: Use of a SPAD meter to estimate chlorophyll content in Eugenia uniflora L. leaves as affected by contrasting light environments and soil flooding.–Photosynthetica 48: 332–338, 2010.

    Article  CAS  Google Scholar 

  • Minocha R., Martinez G., Lyons B. et al.: Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species.–Can. J. Forest Res. 39: 849–861, 2009.

    Article  CAS  Google Scholar 

  • Monje O.A., Bugbee B.: Inherent limitations of nondestructive chlorophyll meters: A comparison of two types of meters.–HortScience 27: 69–71, 1992.

    CAS  PubMed  Google Scholar 

  • Moy A., Le S., Verhoeven A.: Different strategies for photoprotection during autumn senescence in maple and oak.–Physiol. Plantarum 155: 205–216, 2015.

    Article  CAS  Google Scholar 

  • Murray J.R., Hackett W.P.: Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L.–Plant Physiol. 97: 343–351, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento H.C.S., Marenco R.A.: SPAD-502 readings in response to photon fluence in leaves with different chlorophyll content.–Rev. Ceres. 57: 614–620, 2010.

    Article  CAS  Google Scholar 

  • Neufeld H.S., Chappelka A.H., Somers G.L. et al.: Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower.–Photosynth. Res. 87: 281–286, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Novak A.B., Short F.T.: Leaf reddening in the seagrass Thalassia testudinum in relation to anthocyanins, seagrass physiology and morphology, and plant protection.–Mar. Biol. 158: 1403–1416, 2011.

    Article  Google Scholar 

  • Pang Q.Y., Zhuo L.H.: [Spatial difference in physiological indexes of autumn-colored maple leaves.]–J. Northeast Forest. Univ. 35: 16–18, 2007. [In Chinese]

    Google Scholar 

  • Pelletier V., Caron E., Caron J. et al.: Impact of irrigation thresholds on total anthocyanin content in cranberries.–Commun. Soil Sci. Plan. 46: 2095–2099, 2015.

    Article  CAS  Google Scholar 

  • Percival G.C., Keary I. P., Noviss K.: The potential of a chlorophyll content SPAD meter to quantify nutrient stress in foliar tissue of sycamore (Acer pseudoplatanus), English oak (Quercus robur), and European beech (Fagus sylvatica).–Arbor. Urban Forest. 34: 89–100, 2008.

    Google Scholar 

  • Pinkard E.A., Patel V., Mohammed C.: Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter.–Forest Ecol. Manage. 223: 211–217, 2006.

    Article  Google Scholar 

  • Pirie A., Mullins M.G.: Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid.–Plant Physiol. 58: 468–472, 1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis A.R., Favarin J.L., Malavolta E. et al.: Photosynthesis, chlorophylls, and SPAD readings in coffee leaves in relation to nitrogen supply.–Commun. Soil Sci. Plan. 40: 1512–1528, 2009.

    Article  CAS  Google Scholar 

  • Richardson A.D., Duigan S.P., Berlyn G.P.: An evaluation of noninvasive methods to estimate foliar chlorophyll content.–New Phytol. 153: 185–194, 2002.

    Article  CAS  Google Scholar 

  • Samsone I., Andersone U., Vikmane M. et al.: Nondestructive methods in plant biology: an accurate measurement of chlorophyll content by a chlorophyll meter.–Acta U. Latviensis 723: 145–154, 2007.

    Google Scholar 

  • Schaper H., Chacko E.K.: Relation between extractable chlorophyll and portable chlorophyll meter readings in leaves of eight tropical and subtropical fruit-tree species.–J. Plant Physiol. 138: 674–677, 1991.

    Article  CAS  Google Scholar 

  • Shiraishi M., Yamada M., Mitani N. et al.: A rapid determination method for anthocyanin profiling in grape genetic resources.–J. Jpn. Soc. Hortic. Sci. 76: 28–35, 2007.

    Article  CAS  Google Scholar 

  • Silla F., González-Gil A., Gonzalez-Molina M.E. et al.: Estimation of chlorophyll in Quercus leaves using a portable chlorophyll meter: effects of species and leaf age.–Ann. Forest Sci. 67: 108, 2010.

    Article  Google Scholar 

  • Sudahono Byrne D.H., Rouse R.E.: Greenhouse screening of citrus rootstock for tolerance to bicarbonate-induced iron chlorosis.–HortScience 29: 113–116, 1994.

    Google Scholar 

  • Tang Q.R., Chen D.F., Chen Y.Y. et al.: [Changes of physiology and biochemistry during leafcolor transformation in Loropetalum chinense var. rubrum.]–Sci. Silvae Sin. 42: 111–115, 2006. [In Chinese]

    CAS  Google Scholar 

  • Torres Netto A., Campostrini E., de Oliveira J.G. et al.: Portable chlorophyll meter for the quantification of photosynthetic pigments, nitrogen and the possible use for assessment of the photochemical process in Carica papaya L.–Braz. J. Plant Physiol. 14: 203–210, 2002.

    Article  CAS  Google Scholar 

  • Torres Netto A., Campostrini E., de Oliveira J.G. et al.: Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves.–Sci. Hortic.-Amsterdam 104: 199–209, 2005.

    Article  CAS  Google Scholar 

  • Uddling J., Gelang-Alfredsson J., Piikki K. et al.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings.–Photosynth. Res. 91: 37–46, 2007.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg A.K., Perkins T.D.: Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves.–Forest Ecol. Manage. 200: 113–117, 2004.

    Article  Google Scholar 

  • Wang Q.B., Chen J.J., Stamps R.H. et al.: Correlation of visual quality grading and SPAD reading of green-leaved foliage Plants.–J. Plant Nutr. 28: 1215–1225, 2005.

    Article  CAS  Google Scholar 

  • Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution.–J. Plant Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

  • Wen L.Y., Chen T., Zhang M.X. et al.: Seasonal changes in anthocyanin contents and in activities of xanthophyll and ascorbate-glutathione cycles in Sabina species derived from different environments.–Acta Physiol. Plant. 32: 801–808, 2010.

    Article  CAS  Google Scholar 

  • Yang Y., Wang G.X., Yang L.D. et al.: Physiological responses of Kobresia pygmaea to warming in Qinghai-Tibetan Plateau permafrost region.–Acta Oecol. 39: 109–116, 2012.

    Article  Google Scholar 

  • Zhang K.M., Yu H.J., Shi K. et al.: Photoprotective roles of anthocyanins in Begonia semperflorens.–Plant Sci. 179: 202–208, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation of China (No. 31300507), Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, and National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No. 2011BAD37B0101). This work is based upon work supported by the Department of Energy under Award Number DE-EM0004391 to the University of Georgia Research Foundation. We also thank the two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.Z. Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Aubrey, D. & Sun, H. Predictive capability of a leaf optical meter for determining leaf pigment status during senescence. Photosynthetica 55, 543–552 (2017). https://doi.org/10.1007/s11099-016-0678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0678-8

Additional key words

Navigation