Skip to main content
Log in

Photosynthetic response of tetraploid and hexaploid wheat to water stress

  • Original Paper
  • Published:
Photosynthetica

Abstract

Photosynthetic characteristics of ear and flag leaves of wheat species, tetraploid Triticum dicoccoides Kom and hexaploid Bima1, were studied in plants grown under well-watered (WW) and water-stressed (WS) conditions. Compared to ears, flag leaves exhibited higher photosynthetic rate (P N) at the filling stage, but more severe decrease under WS. P N in the tetraploid wheat ear remained higher than that in the hexaploid wheat during the grain-filling stage. Water stress decreased PN in both the organs; this decline was caused by a reduction in Rubisco activity, not by drought-induced stomatal limitation. Tetraploid wheat ears exhibited higher relative water content and water-use efficiency than that of hexaploid wheat, under WS. The change in phosphoenolpyruvate carboxylase activity and carbon isotope composition indicated the absence of C4 metabolism in the ears of both species under both conditions. The improved performance of the tetraploid wheat ears under WS was associated with better water relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

C o :

ambient CO2 concentration

Car:

carotenoids

Chl:

chloroplast

DAA:

days after anthesis

E :

transpiration rate

g s :

stomatal conductance

HS:

heading stage

L s :

stomatal limitation

MDH:

malate dehydrogenase

PEPC:

phosphoenolpyruvate carboxylase

P N :

net photosynthetic rate

RWC:

relative water content

RuBP:

ribulose-1,5- bisphosphate

WUE:

water-use efficiency

WS:

water-stressed

WW:

well-watered

References

  • Abbad H., Jaafari S.A., Bort J. et al.: Comparison of flag leaf and the ear photosynthesis with the biomass and grain yield of durum wheat under a range of water conditions and different genotypes.–Agronomie 24: 19–28, 2004.

    Article  Google Scholar 

  • Al-Khatib K., Paulsen G.M.: Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions.–Crop Sci. 30: 1127–1132, 1990.

    Article  Google Scholar 

  • Araus J.L., Brown H.R., Febrero A. et al.: Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat.–Plant Cell Environ. 16: 383–392, 1993.

    Article  CAS  Google Scholar 

  • Araus J.L., Slafer G.A., Reynolds M.P., Royo C.: Plant breeding and drought in C3 cereals: what should we breed for?–Ann. Bot.-London 89: 925–940, 2002.

    Article  Google Scholar 

  • Araus J.L., Slafer G.A., Royo C., Serret M.D.: Breeding for yield potential and stress adaptation in cereals.–Crit. Rev. Plant Sci. 27: 377–412, 2008.

    Article  Google Scholar 

  • Aschan G., Pfanz H.: Non-foliar photosynthesis–a strategy of additional carbon acquisition.–Flora 198: 81–97, 2003.

    Article  Google Scholar 

  • Bazzaz F.A., Carlson R.W., Harper J.L.: Contribution to reproductive effort by photosynthesis of flowers and fruits.–Nature 279: 554–555, 1979.

    Article  Google Scholar 

  • Berry J. A., Downton W.J.S.: Environmental regulation of photosynthesis.–In: Govindjee (ed.): Photosynthesis, Vol. II. Pp. 263–343. Academic Press, New York 1982.

    Google Scholar 

  • Blanke M.M., Ebert G.: Phosphoenolpyruvate carboxylase and carbon economy of apple seedlings.–J. Exp. Bot. 43: 965–968, 1992.

    Article  CAS  Google Scholar 

  • Blum A.: Photosynthesis and transpiration in leaves and ears of wheat and barley varieties.–J. Exp. Bot. 36: 432–440, 1985.

    Article  Google Scholar 

  • Bort J., Febrero A., Amaro T., Araus J.L.: Role of awns in ear water-use efficiency and grain weight in barley.–Agronomie 14: 133–139, 1994.

    Article  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.–Anal Biochem. 72: 248–250, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Camp P.J., Huber S.C., Burke J.J., Moreland D.E.: Biochemical changes that occur during senescence of wheat leaves: I. Basis for the Reduction of Photosynthesis.–Plant Physiol. 70: 1641–1646, 1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G.Y., Yong Z.H., Liao Y. et al.: Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1, 5-bisphosphate carboxylation limitation and ribulose-1, 5-bisphosphate regeneration limitation.–Plant Cell Physiol. 46: 1036–1045, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Demirevska-Kepova K., Holzer R., Simova-Stoilova L., Feller U.: Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco actives in wheat leaves.–Biol. Plant. 49: 521–525, 2005.

    Article  CAS  Google Scholar 

  • Evans L.T., Bingham J., Jackson P., Sutherland J.: Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears.–Ann. Appl. Biol. 70: 67–76, 1972.

    Article  Google Scholar 

  • Evans L.T., Rawson H.M.: Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat.–Aust. J. Biol. Sci. 23: 245–254, 1970.

    Article  Google Scholar 

  • Evans L.T., Wardlaw I. F., Fischer R. A.: Wheat.–In: Evans L.T.(ed.): Crop Physiology: Some Case of Histories. Pp. 101–150. Cambridge University Press, Cambridge 1975.

    Google Scholar 

  • Farquhar G.D., Richards R.A.: Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes.–Aust. J. Plant Physiol. 11: 539–552, 1984.

    Article  CAS  Google Scholar 

  • Gill B.S., Friebe B., Endo T.R.: Standard karyotype and nomenclature system for the description of chromosome bands and structural aberations in wheat (Triticum aestivum).–Genome 34: 830–839, 1991.

    Article  Google Scholar 

  • Grover A., Sabat S.C., Mohanty P.: Effect of temperature on photosynthetic activities of senescing detached wheat leaves.–Plant Cell Physiol. 27: 117–126, 1986.

    CAS  Google Scholar 

  • Hetherington S., Smillie R., Davies W.: Photosynthetic activities of vegetative and fruiting tissues of tomato.–J. Exp. Bot. 49: 1173–1181, 1998.

    Article  CAS  Google Scholar 

  • Hubick K. T., Farquhar G. D.: Carbon isotope discrimination and the ratio of carbon gains to water lost in barley cultivars.–Plant Cell Environ. 12: 795–804, 1989.

    Article  Google Scholar 

  • Imaizumi N., Usuda H., Nakamoto H., Ishihara K.: Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles.–Plant Cell Physiol. 31: 835–843, 1990.

    CAS  Google Scholar 

  • Jia S., Lv J., Jiang S. et al.: Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit.–Photosynthetica 53: 95–109, 2015.

    Article  CAS  Google Scholar 

  • Kimber G.: Genomic relationships in Triticum and the availability of alien germplasm.–In: Damania A.B. (ed.): Biodiversity and Wheat Improvement. Pp. 9–16. Academic, Chichester 1993

    Google Scholar 

  • Kobza J., Uribe E.G., Williams G.J.: Temperature dependence of photosynthesis in Agropyron smithii Rydb. III. Responses of protoplasts and intact chloroplasts.–Plant Physiol. 75: 378–381, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriedemann P.: The photosynthetic activity of the wheat ear.–Ann. Bot.-London 30: 349–363, 1966.

    Article  CAS  Google Scholar 

  • Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP.–Ann. Bot.-London 89: 871–885, 2002.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K.: Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown.–J. Plant Physiol. 131: 101–110, 1987.

    Article  CAS  Google Scholar 

  • Lilley R.M., Walker D.A.: An improved spectrophotometric assay for ribulosebisphosphate carboxylase.–BBA-Enzymology 358: 226–229, 1974.

    CAS  Google Scholar 

  • Liu E.K., Mei X.R., Yan C.R. et al.: Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes–Agr. Water Manage. 167: 75–85, 2016.

    Article  Google Scholar 

  • Lytovchenko A., Eickmeier I., Pons C. et al.: Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development.–Plant Physiol. 157: 1650–1663, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcelis L.F.M., Hofman-Eijer L.R.B.: The contribution of fruit photosynthesis to the carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny.–Physiol. Plantarum 93: 476–483, 1995.

    Article  CAS  Google Scholar 

  • Martinez D., Luquez V., Bartoli C., Guiamét J.: Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum).–Physiol. Plantarum 119: 519–525, 2003.

    Article  CAS  Google Scholar 

  • Masumoto C., Miyazawa S.I., Ohkawa H. et al.: Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation.–P. Natl. Acad.Sci. USA 107: 5226–5231, 2010.

    Article  CAS  Google Scholar 

  • Maydup M.L., Antonietta M., Guiamet J.J. et al.: The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.).–Field Crop. Res. 119: 48–58, 2010.

    Article  Google Scholar 

  • Maydup M. L., Antonietta M., Guiamet J. J., Tambussi E. A.: The contribution of green parts of the ear to grain filling in old and modern cultivars of bread wheat (Triticum aestivum L.): Evidence for genetic gains over the past century.–Field Crop. Res. 134: 208–215, 2012.

    Article  Google Scholar 

  • Mingo D.M., Bacon M.A., Davies W.J.: Non-hydraulic regulation of fruit growth in tomato plants (Lycopersicon esculentum cv. Solairo) growing in drying soil.–J. Exp. Bot. 54: 1205–1212, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Monson R.K., Stidham M.A., Williams G.J. et al.: Temperature dependence of photosynthesis of Agropyron smithii Rydb. I. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1, 5-bisphosphate carboxylase measured in vivo and in vitro.–Plant Physiol. 69: 921–928, 1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutbeam A., Duffus C.: Evidence for C4 photosynthesis in barley pericarp tissue.–Biochem. Bioph. Res. Co. 70:1198–1203, 1976.

    Article  CAS  Google Scholar 

  • Pfanz H., Aschan G., Langenfeld-Heyser R. et al.: Ecology and ecophysiology of tree stems: corticular and wood photosynthesis.–Naturwissenschaften 89: 147–162, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Pfanz H., Aschan G.: The existence of bark and stem photosynthesis and its significance for the overall carbon gain. An ecopysiological and ecological approach.–Prog. Bot. 62: 477–510, 2001.

    Article  CAS  Google Scholar 

  • Ram H., Singh R.: Chlorophyll content, photosynthetic rates and related enzyme activities in ear parts of two wheat cultivars differing in grain yield.–Plant Physiol Bioch. 9: 94–102, 1982.

    CAS  Google Scholar 

  • Reynolds M.P., Mujeeb-Kazi A., Sawkins M.: Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought & salinity-prone environments.–Ann. Appl. Biol. 146: 239–259, 2005.

    Article  CAS  Google Scholar 

  • Salvucci M.E., Crafts-Brandner S.J.: Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis.–Plant Physiol. 120:179–186, 2004a.

    Article  CAS  Google Scholar 

  • Salvucci M.E., Crafts-Brandner S.J.: Mechanism for deactivation of Rubisco under moderate heat stress.–Plant Physiol. 122: 513–519, 2004b.

    Article  CAS  Google Scholar 

  • Sánchez-Díaz M., García J.L., Antolín M.C., Araus J.L.: Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable carbon composition of barley.–Photosynthetica 40: 415–421, 2002.

    Article  Google Scholar 

  • Sawicki M., Courteaux B, Rabenoelina F. et al.: Leaf vs. inflorescence: differences in photosynthetic activity of grapevine.–Photosynthetica, doi 10.1007/s11099-016-0230-x.

  • Simmons S.R.: Growth, development and physiology.–In: Heyne E.G. (ed.): Wheat and Wheat Improvement. Pp. 77–113. Am. Soc. Agron. Inc., Madison 1987.

    Google Scholar 

  • Singal H.B., Sheoran I.S., Singh R.: In vitro enzyme activities and products of 14CO2 assimilation in flag leaf and ear parts of wheat (Triticum aestivum L.).–Photosynth. Res. 8: 113–122, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Tambussi E.A., Bort J., Guiamet J.J. et al.: The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield.–Crit. Rev. Plant Sci. 26: 1–16, 2007.

    Article  CAS  Google Scholar 

  • Tambussi E.A., Nogués S., Araus J.L.: Ear of durum wheat under water stress: water relations and photosynthetic metabolism.–Planta 221: 446–458, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Teare I.D., Peterson C.J., Law A.G.: Size and frequency of leaf stomata in cultivars of triticum aestivum and other Triticum species.–Crop Sci. 11: 496–498, 1971.

    Article  Google Scholar 

  • Teare I.D., Sij L.W., Waldren R.P., Goltz S.M.: Comparative data on the rate of photosynthesis, respiration and transpiration of different organs in awned and awnless isogenic lines of wheat.–Can. J. Plant Sci. 52: 965–971, 1972.

    Article  CAS  Google Scholar 

  • Turner N.C.: Techniques and experimental approaches for the measurement of plant water status.–Plant Soil 58: 339–366, 1981.

    Article  Google Scholar 

  • Vohlidal J.: Explanatory glossary of terms used in expression of relative isotope ratios and gas ratios.–International union of pure and applied chemistry 30, ISSN: 0193–6484, 2008

  • Wahid A., Gelani S., Ashraf M., Foolad M. R.: Heat tolerance in plants: an overview.–Environ. Exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Wang Z.M., Wei A.L., Zheng D.M.: Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear.–Photosynthetica 39: 239–244, 2001.

    Article  Google Scholar 

  • Wirth E., Kelly G.J., Fischbeck G., Latzko E.: Enzyme activities and products of CO2 fixation in various photosynthetic organs of wheat and oat.–Z. Pflanzenphysiol. 82:78–87, 1976.

    Article  Google Scholar 

  • Ziegler-Jöns A.: Gas-exchange of ears of cereals in response to carbon dioxide and light. II. Occurrence of a C3-C4 intermediate type of photosynthesis.–Planta 178:164–175, 1989

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Supporting Programs (2015BAD22B01), the 111 project of the Chinese Education Ministry (B12007), and Special Funds of Scientific Research Programs of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021403-C5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Q. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.P., Li, Y.Y., Li, D.Y. et al. Photosynthetic response of tetraploid and hexaploid wheat to water stress. Photosynthetica 55, 454–466 (2017). https://doi.org/10.1007/s11099-016-0659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0659-y

Additional key words

Navigation