Variations of leaf morphology, photosynthetic traits and water-use efficiency in Western-Mediterranean tomato landraces

Abstract

Modern tomato (Solanum lycopersicum L.) breeding has mainly focused on increasing productivity under unlimited watering. In contrast, some Mediterranean accessions have been traditionally cultivated under water shortage and selected on the basis of their water-use efficiency (WUE). Ramellet and Penjar landraces were planted with other traditional, old and modern inbreeds, under full irrigation. In order to found differences between the tomato accessions, gas-exchange and leaf morphology measurements were performed. Despite high variability, Ramellet and Penjar presented clear differences compared to modern cultivars, mostly related to leaf morphology and photosynthetic traits, while no differences were found in WUE. Results highlighted that better leaf CO2 conductance might be a main factor determining the improvement of net CO2 assimilation and WUE.

This is a preview of subscription content, log in to check access.

Abbreviations

AG:

accession groups

BRA:

Balearic Islands Ramellet accessions

C a :

CO2 ambient concentration

C c :

chloroplastic CO2 concentration

Chl:

chlorophyll

C i :

substomatal CO2 concentration

CON:

control accessions

CONm:

modern inbreeds accessions

CONo:

old varieties accessions

CONt:

traditional non-long shelf-life fruit genotype accessions

CPA:

Catalonian Penjar accessions

ETR:

electron transport rate

g m :

mesophyll conductance

g s :

stomatal conductance to H2O

gtotal :

the total conductance

LD:

leaf density

d13C:

leaf isotope composition

LMA:

leaf mass area

LSL:

long shelf-life fruit phenotype

LT:

leaf thickness

PCA:

principal components analyses

P N :

net photosynthetic rate

R D :

rate of mitochondrial respiration at darkness

R L :

rate of mitochondrial respiration in light

Vcmax :

maximum velocity of Rubisco carboxylation

VPA:

Valencian Country Penjar accessions

WM:

Western Mediterranean accessions

WUE:

water-use efficiency

WUEi :

intrinsic water-use efficiency

References

  1. Bai Y., Lindhout P.: Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? - Ann. Bot.-London 100: 1085–1094, 2007.

    Article  Google Scholar 

  2. Barbour M.M., Warren C.R., Farquhar G.D. et al.: Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. - Plant Cell Environ. 33: 1176–1185, 2010.

    PubMed  Google Scholar 

  3. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992–1998, 2002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bickford C.P., Hanson D.T., McDowell N.G.: Influence of diurnal variation in mesophyll conductance on modeled 13C discrimination: results from a field study. - C J. Exp. Bot. 61: 3223–3233, 2010.

    CAS  Article  Google Scholar 

  5. Blonder B., Violle C., Enquist B. J.: Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. - C J. Ecol. 101: 981–989, 2013.

    Article  Google Scholar 

  6. Blum A.: Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? - Aust. J. Agr. Res. 56: 1159–1168, 2005.

    Article  Google Scholar 

  7. Bota J., Conesa M.À., Ochogavia J.M. et al.: Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. - Genet. Resour. Crop Ev. 61: 1131–1146, 2014.

    Article  Google Scholar 

  8. Bota J., Tomás M., Flexas J. et al.: Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. - Agr. Water Manage. 164: 91–99, 2016.

    Article  Google Scholar 

  9. Brugnoli E., Farquhar G. D.: Photosynthetic fractionation of carbon isotopes. - In: Leegood C.L., Govindjee (ed.): Photosynthesis: Physiology and Metabolism. Pp. 399–434. Springer, Dordrecht 2000.

    Google Scholar 

  10. Casals J., Pascual L., Cañizares J., et al.: The risks of success in quality vegetable markets: Possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. - Sci. Hortic.-Amsterdam 130: 78–84, 2011.

    Article  Google Scholar 

  11. Casals J., Pascual L., Cañizares J. et al.: Genetic basis of long shelf life and variability into Penjar tomato. - Genet. Resour. Crop Ev. 59: 219–229, 2012.

    Article  Google Scholar 

  12. Centritto M., Jarvis P.G.: Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency. - Tree Physiol. 19: 807–814, 1999.

    CAS  Article  PubMed  Google Scholar 

  13. Centritto M., Loreto F., Chartzoulakis K.: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. - Plant Cell Environ. 26: 585–594, 2003.

    Article  Google Scholar 

  14. Condon A., Richards R., Rebetzke G., Farguhar G.: Improving intrinsic water-use efficiency and crop yield. - Crop Sci. 42: 122–131, 2002.

    Article  PubMed  Google Scholar 

  15. Condon A.G., Richards R.A, Rebetzke G.J., Farquhar G.D.: Breeding for high water-use efficiency. - C J. Exp. Bot. 55: 2447–2460, 2004.

    CAS  Article  Google Scholar 

  16. Cornic G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture - Not by affecting ATP synthesis. - Trends Plant Sci. 5: 187–188, 2000.

    Article  Google Scholar 

  17. Cuartero J., Fernández-Muñoz R.: Tomato and salinity. - Sci. Hortic.-Amsterdam 78: 83–125, 1998.

    Article  Google Scholar 

  18. Dhanapal A. P., Ray J. D., Singh S. K., et al.: Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. - Theor. Appl. Genet. 128: 73–91, 2015.

    CAS  Article  PubMed  Google Scholar 

  19. Donovan L. A., Ehleringer J. R.: Potential for selection on plants for water-use efficiency as estimated by carbon isotope discrimination. - Am. J. Bot. 81: 927–935, 1994.

    Article  Google Scholar 

  20. Driever S. M., Lawson T., Andralojc P. J. et al.: Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. - C J. Exp. Bot. 65: 4959–4973, 2014.

    CAS  Article  Google Scholar 

  21. Evans J. R.: Leaf anatomy enables more equal access to light and CO2 between chloroplasts. - New Phytol. 143: 93–104, 1999.

    Article  Google Scholar 

  22. FAO: FAOSTAT database collections. FAO, Rome. Acces date: 2015-12-15. URL Retrieved from http://faostat.fao.org. 2015

  23. Farquhar G., O’Leary M., Berry J.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. - Aust. J. Plant Physiol. 9: 121–137, 1982.

    CAS  Article  Google Scholar 

  24. Farquhar G. D., Ehleringer J. R., Hubick K. T.: Carbon isotope discrimination and photosynthesis. - Plant Mol. Biol. 40: 503–537, 1989.

    CAS  Google Scholar 

  25. Flanagan L. B., Farquhar G. D.: Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystemscales in a northern Great Plains grassland. - Plant Cell Environ. 37: 425–438, 2014.

    CAS  Article  PubMed  Google Scholar 

  26. Flexas J., Díaz-Espejo A., Berry J. et al.: Analysis of leakage in IRGA¡¯s leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. - C J. Exp. Bot. 58: 1533–1543, 2007.

    CAS  Article  Google Scholar 

  27. Flexas J., Ribas-Carbó M., Díaz-Espejo A. et al.: Mesophyll conductance to CO2: current knowledge and future prospects. - Plant Cell Environ. 31: 602–621, 2008.

    CAS  Article  PubMed  Google Scholar 

  28. Flexas J., Niinemets Ü., Gallé A. et al.: Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. - Photosynth. Res. 117: 45–59, 2013.

    CAS  Article  PubMed  Google Scholar 

  29. Flexas J., Diaz-Espejo A., Gago J. et al.: Photosynthetic limitations in Mediterranean plants: A review. - Environ. Exp. Bot 103: 12–23, 2014.

    CAS  Article  Google Scholar 

  30. Foolad M. R.: Genome mapping and molecular breeding of tomato. - Int. J. Plant Genom. 2007: 1–52, 2007.

    Google Scholar 

  31. Foolad M. R., Panthee D. R.: Marker-assisted selection in tomato breeding. - CRC. Cr. Rev. Plant Sci. 31: 93–123, 2012.

    Article  Google Scholar 

  32. Freschet G. T., Bellingham P. J., Lyver P. O. et al.: Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. - Ecol. Evol. 3: 1065–1078, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gago J., Douthe C., Florez-Sarasa I. et al.: Opportunities for improving leaf water use efficiency under climate change conditions. - Plant Sci. 226: 108–119, 2014.

    CAS  Article  PubMed  Google Scholar 

  34. Galmés J., Conesa M.A., Ochogavía J.M. et al.: Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. - Plant Cell Environ. 34: 245–260, 2011.

    Article  PubMed  Google Scholar 

  35. Galmés J., Ochogavía J.M., Gago J. et al.: Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in relation to gas exchange parameters. - Plant Cell Environ. 36: 920–935, 2013.

    Article  PubMed  Google Scholar 

  36. Gitay H., Suárez A., Watson R.: Cambio climático y biodiversidad. - Documento Técnico V IPCC. http://doi.org/10.1111/j.1574-6968.2008.01186.x, 2002.[In Portuguese]?

    Google Scholar 

  37. Gornall J., Betts R., Burke E. et al.: Implications of climate change for agricultural productivity in the early twenty-first century. - Philos. T. R. Soc. B 365: 2973–2989, 2010.

    Article  Google Scholar 

  38. Hajjar R., Hodgkin T.: The use of wild relatives in crop improvement: A survey of developments over the last 20 years. - Euphytica 156: 1–13, 2007.

    Article  Google Scholar 

  39. Hanba Y.T., Miyazawa S.I., Terashima I.: The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. - Funct. Ecol. 13: 632–639, 1999.

    Article  Google Scholar 

  40. Hanba Y., Kogami H., Terashima I.: The effect of growth irradiance on leaf anatomy and photosynthesis in maple species. - Plant Cell Environ. 25: 1021–1030, 2002.

    Article  Google Scholar 

  41. Harley P.C., Loreto F., Di Marco G., Sharkey T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. - Plant Physiol. 98: 1429–1436, 1992.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Hermida-Carrera C., Kapralov M. V., Galmés J.: Rubisco catalytic properties and temperature response in crops. - Plant Physiol. 171: 2549–2561, 2016.

    CAS  PubMed  Google Scholar 

  43. Hetherington, A.M., Woodward, F.I.: The role of stomata in sensing and driving environmental change. - Nature 424: 901–908, 2003.

    CAS  Article  PubMed  Google Scholar 

  44. Labate J.A., Robertson L.D., Baldo A.M.: Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.). - Heredity 103: 257–267, 2009.

    CAS  Article  PubMed  Google Scholar 

  45. Long S. P., Zhu X.G., Naidu S. L., Ort D. R.: Can improvement in photosynthesis increase crop yields? - Plant Cell Environ. 29: 315–330, 2006.

    CAS  Article  PubMed  Google Scholar 

  46. Marenco R.A., Antezana-Vera S.A., Nascimento H.C.S.: Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. - Photosynthetica 47: 184–190, 2009.

    Article  Google Scholar 

  47. Martin B., Thorstenson Y.R.: Stable carbon isotope composition (deltaC), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F(1) hybrid. - Plant Physiol. 88: 213–217, 1988.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Medrano H., Escalona J. M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. - Ann. Bot.-London 89: 895–905, 2002.

    CAS  Article  Google Scholar 

  49. Ochogavía J. M., López M., Rigo M. et al.: Characterization of the population of tomàtiga de Ramellet of the Balearic Islands - Conselleria de Presidència. Agricultura i Pesca. Illes Balears, 2011. [In Catalan]

    Google Scholar 

  50. Parry M.A.J., Flexas J., Medrano H.: Prospects for crop production under drought: research priorities and futures directions. - Ann. Appl. Biol. 147: 211–226, 2005.

    Article  Google Scholar 

  51. Rosado-Souza L., Scossa F., Chaves I.S. et al: Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. - Planta 242: 677–691, 2015.

    CAS  Article  PubMed  Google Scholar 

  52. Seibt U., Rajabi A., Griffiths H., Berry J.A.: Carbon isotopes and water use efficiency: sense and sensitivity. - Oecologia 155: 441–454, 2008.

    Article  PubMed  Google Scholar 

  53. Sharkey T.D.: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. - Bot. Rev. 51: 53–105, 1985.

    Article  Google Scholar 

  54. Sheffield J., Wood E.F.: Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle. - C J. Climate 21: 432–458, 2008.

    Article  Google Scholar 

  55. Soolanayakanahally R., Guy R. D., Silim S. N. et al.: Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). - Plant Cell Environ. 32: 1821–1832, 2009.

    CAS  Article  PubMed  Google Scholar 

  56. The Tomato Genome Consortium: The tomato genome sequence provides insights into fleshy fruit evolution. - Nature 485: 635–641, 2012.

    Article  Google Scholar 

  57. Valladares F., Gianoli E., Gómez J.M.: Ecological limits to plant phenotypic plasticity. - New Phytol. 176: 749–763, 2007.

    Article  PubMed  Google Scholar 

  58. Warren C.R., Adams M.A.: Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. - Plant Cell Environ. 29: 192–201, 2006.

    CAS  Article  PubMed  Google Scholar 

  59. White J.W., Montes R.C.: Variation in parameters related to leaf thickness in common bean (Phaseolus vulgaris L.). - Field Crop. Res. 91: 7–21, 2005.

    Article  Google Scholar 

  60. Xu J., Ranc N., Muños S. et al.: Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. - Theor. Appl. Genet. 126: 567–581, 2013.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Galmés.

Additional information

Acknowledgements

We thank Dr. Ángeles Calatayud (IVIA) and Dr Sergio González Nebauer (UPV) for lending us their Li-Cor 6400, and Dr. Cyril Douthe for help in intendance. We are also grateful to Mr. Maurici Calduch for crop care and management. Also, we would like to thank Dr. Biel Martorell for his technical help on the IRMS and all the staff at the Serveis Cientifico-Tecnics of the Universitat de les Illes Balears for their help while running these experiments. This work was funded by the projects TOMDRO (AGL2013) to Dr. Galmés, TRADITOM (EC H2020 topic SFS-7a-2014 Contract 634561) to A. Granell, and AAEE/56/2015 from the Government of the Balearic Islands. We also thank to two anonymous reviewers for their helpful comments to improve the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fullana-Pericàs, M., Conesa, M.À., Soler, S. et al. Variations of leaf morphology, photosynthetic traits and water-use efficiency in Western-Mediterranean tomato landraces. Photosynthetica 55, 121–133 (2017). https://doi.org/10.1007/s11099-016-0653-4

Download citation

Additional key words

  • carbon assimilation
  • carbon isotope composition
  • diffusive limitations
  • mesophyll conductance