Photosynthetica

, Volume 55, Issue 1, pp 121–133

Variations of leaf morphology, photosynthetic traits and water-use efficiency in Western-Mediterranean tomato landraces

  • M. Fullana-Pericàs
  • M. À. Conesa
  • S. Soler
  • M. Ribas-Carbó
  • A. Granell
  • J. Galmés
Article

Abstract

Modern tomato (Solanum lycopersicum L.) breeding has mainly focused on increasing productivity under unlimited watering. In contrast, some Mediterranean accessions have been traditionally cultivated under water shortage and selected on the basis of their water-use efficiency (WUE). Ramellet and Penjar landraces were planted with other traditional, old and modern inbreeds, under full irrigation. In order to found differences between the tomato accessions, gas-exchange and leaf morphology measurements were performed. Despite high variability, Ramellet and Penjar presented clear differences compared to modern cultivars, mostly related to leaf morphology and photosynthetic traits, while no differences were found in WUE. Results highlighted that better leaf CO2 conductance might be a main factor determining the improvement of net CO2 assimilation and WUE.

Additional key words

carbon assimilation carbon isotope composition diffusive limitations mesophyll conductance 

Abbreviations

AG

accession groups

BRA

Balearic Islands Ramellet accessions

Ca

CO2 ambient concentration

Cc

chloroplastic CO2 concentration

Chl

chlorophyll

Ci

substomatal CO2 concentration

CON

control accessions

CONm

modern inbreeds accessions

CONo

old varieties accessions

CONt

traditional non-long shelf-life fruit genotype accessions

CPA

Catalonian Penjar accessions

ETR

electron transport rate

gm

mesophyll conductance

gs

stomatal conductance to H2O

gtotal

the total conductance

LD

leaf density

d13C

leaf isotope composition

LMA

leaf mass area

LSL

long shelf-life fruit phenotype

LT

leaf thickness

PCA

principal components analyses

PN

net photosynthetic rate

RD

rate of mitochondrial respiration at darkness

RL

rate of mitochondrial respiration in light

Vcmax

maximum velocity of Rubisco carboxylation

VPA

Valencian Country Penjar accessions

WM

Western Mediterranean accessions

WUE

water-use efficiency

WUEi

intrinsic water-use efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2016_653_MOESM1_ESM.pdf (249 kb)
Supplementary material, approximately 249 KB.
11099_2016_653_MOESM2_ESM.pdf (150 kb)
Supplementary material, approximately 150 KB.

References

  1. Bai Y., Lindhout P.: Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? - Ann. Bot.-London 100: 1085–1094, 2007.CrossRefGoogle Scholar
  2. Barbour M.M., Warren C.R., Farquhar G.D. et al.: Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. - Plant Cell Environ. 33: 1176–1185, 2010.PubMedGoogle Scholar
  3. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992–1998, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bickford C.P., Hanson D.T., McDowell N.G.: Influence of diurnal variation in mesophyll conductance on modeled 13C discrimination: results from a field study. - C J. Exp. Bot. 61: 3223–3233, 2010.CrossRefGoogle Scholar
  5. Blonder B., Violle C., Enquist B. J.: Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. - C J. Ecol. 101: 981–989, 2013.CrossRefGoogle Scholar
  6. Blum A.: Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? - Aust. J. Agr. Res. 56: 1159–1168, 2005.CrossRefGoogle Scholar
  7. Bota J., Conesa M.À., Ochogavia J.M. et al.: Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. - Genet. Resour. Crop Ev. 61: 1131–1146, 2014.CrossRefGoogle Scholar
  8. Bota J., Tomás M., Flexas J. et al.: Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. - Agr. Water Manage. 164: 91–99, 2016.CrossRefGoogle Scholar
  9. Brugnoli E., Farquhar G. D.: Photosynthetic fractionation of carbon isotopes. - In: Leegood C.L., Govindjee (ed.): Photosynthesis: Physiology and Metabolism. Pp. 399–434. Springer, Dordrecht 2000.CrossRefGoogle Scholar
  10. Casals J., Pascual L., Cañizares J., et al.: The risks of success in quality vegetable markets: Possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. - Sci. Hortic.-Amsterdam 130: 78–84, 2011.CrossRefGoogle Scholar
  11. Casals J., Pascual L., Cañizares J. et al.: Genetic basis of long shelf life and variability into Penjar tomato. - Genet. Resour. Crop Ev. 59: 219–229, 2012.CrossRefGoogle Scholar
  12. Centritto M., Jarvis P.G.: Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency. - Tree Physiol. 19: 807–814, 1999.CrossRefPubMedGoogle Scholar
  13. Centritto M., Loreto F., Chartzoulakis K.: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. - Plant Cell Environ. 26: 585–594, 2003.CrossRefGoogle Scholar
  14. Condon A., Richards R., Rebetzke G., Farguhar G.: Improving intrinsic water-use efficiency and crop yield. - Crop Sci. 42: 122–131, 2002.CrossRefPubMedGoogle Scholar
  15. Condon A.G., Richards R.A, Rebetzke G.J., Farquhar G.D.: Breeding for high water-use efficiency. - C J. Exp. Bot. 55: 2447–2460, 2004.CrossRefGoogle Scholar
  16. Cornic G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture - Not by affecting ATP synthesis. - Trends Plant Sci. 5: 187–188, 2000.CrossRefGoogle Scholar
  17. Cuartero J., Fernández-Muñoz R.: Tomato and salinity. - Sci. Hortic.-Amsterdam 78: 83–125, 1998.CrossRefGoogle Scholar
  18. Dhanapal A. P., Ray J. D., Singh S. K., et al.: Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. - Theor. Appl. Genet. 128: 73–91, 2015.CrossRefPubMedGoogle Scholar
  19. Donovan L. A., Ehleringer J. R.: Potential for selection on plants for water-use efficiency as estimated by carbon isotope discrimination. - Am. J. Bot. 81: 927–935, 1994.CrossRefGoogle Scholar
  20. Driever S. M., Lawson T., Andralojc P. J. et al.: Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. - C J. Exp. Bot. 65: 4959–4973, 2014.CrossRefGoogle Scholar
  21. Evans J. R.: Leaf anatomy enables more equal access to light and CO2 between chloroplasts. - New Phytol. 143: 93–104, 1999.CrossRefGoogle Scholar
  22. FAO: FAOSTAT database collections. FAO, Rome. Acces date: 2015-12-15. URL Retrieved from http://faostat.fao.org. 2015Google Scholar
  23. Farquhar G., O’Leary M., Berry J.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. - Aust. J. Plant Physiol. 9: 121–137, 1982.CrossRefGoogle Scholar
  24. Farquhar G. D., Ehleringer J. R., Hubick K. T.: Carbon isotope discrimination and photosynthesis. - Plant Mol. Biol. 40: 503–537, 1989.Google Scholar
  25. Flanagan L. B., Farquhar G. D.: Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystemscales in a northern Great Plains grassland. - Plant Cell Environ. 37: 425–438, 2014.CrossRefPubMedGoogle Scholar
  26. Flexas J., Díaz-Espejo A., Berry J. et al.: Analysis of leakage in IRGA¡¯s leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. - C J. Exp. Bot. 58: 1533–1543, 2007.CrossRefGoogle Scholar
  27. Flexas J., Ribas-Carbó M., Díaz-Espejo A. et al.: Mesophyll conductance to CO2: current knowledge and future prospects. - Plant Cell Environ. 31: 602–621, 2008.CrossRefPubMedGoogle Scholar
  28. Flexas J., Niinemets Ü., Gallé A. et al.: Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. - Photosynth. Res. 117: 45–59, 2013.CrossRefPubMedGoogle Scholar
  29. Flexas J., Diaz-Espejo A., Gago J. et al.: Photosynthetic limitations in Mediterranean plants: A review. - Environ. Exp. Bot 103: 12–23, 2014.CrossRefGoogle Scholar
  30. Foolad M. R.: Genome mapping and molecular breeding of tomato. - Int. J. Plant Genom. 2007: 1–52, 2007.Google Scholar
  31. Foolad M. R., Panthee D. R.: Marker-assisted selection in tomato breeding. - CRC. Cr. Rev. Plant Sci. 31: 93–123, 2012.CrossRefGoogle Scholar
  32. Freschet G. T., Bellingham P. J., Lyver P. O. et al.: Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. - Ecol. Evol. 3: 1065–1078, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gago J., Douthe C., Florez-Sarasa I. et al.: Opportunities for improving leaf water use efficiency under climate change conditions. - Plant Sci. 226: 108–119, 2014.CrossRefPubMedGoogle Scholar
  34. Galmés J., Conesa M.A., Ochogavía J.M. et al.: Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. - Plant Cell Environ. 34: 245–260, 2011.CrossRefPubMedGoogle Scholar
  35. Galmés J., Ochogavía J.M., Gago J. et al.: Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in relation to gas exchange parameters. - Plant Cell Environ. 36: 920–935, 2013.CrossRefPubMedGoogle Scholar
  36. Gitay H., Suárez A., Watson R.: Cambio climático y biodiversidad. - Documento Técnico V IPCC. http://doi.org/10.1111/j.1574-6968.2008.01186.x, 2002.[In Portuguese]?Google Scholar
  37. Gornall J., Betts R., Burke E. et al.: Implications of climate change for agricultural productivity in the early twenty-first century. - Philos. T. R. Soc. B 365: 2973–2989, 2010.CrossRefGoogle Scholar
  38. Hajjar R., Hodgkin T.: The use of wild relatives in crop improvement: A survey of developments over the last 20 years. - Euphytica 156: 1–13, 2007.CrossRefGoogle Scholar
  39. Hanba Y.T., Miyazawa S.I., Terashima I.: The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. - Funct. Ecol. 13: 632–639, 1999.CrossRefGoogle Scholar
  40. Hanba Y., Kogami H., Terashima I.: The effect of growth irradiance on leaf anatomy and photosynthesis in maple species. - Plant Cell Environ. 25: 1021–1030, 2002.CrossRefGoogle Scholar
  41. Harley P.C., Loreto F., Di Marco G., Sharkey T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. - Plant Physiol. 98: 1429–1436, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hermida-Carrera C., Kapralov M. V., Galmés J.: Rubisco catalytic properties and temperature response in crops. - Plant Physiol. 171: 2549–2561, 2016.PubMedGoogle Scholar
  43. Hetherington, A.M., Woodward, F.I.: The role of stomata in sensing and driving environmental change. - Nature 424: 901–908, 2003.CrossRefPubMedGoogle Scholar
  44. Labate J.A., Robertson L.D., Baldo A.M.: Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.). - Heredity 103: 257–267, 2009.CrossRefPubMedGoogle Scholar
  45. Long S. P., Zhu X.G., Naidu S. L., Ort D. R.: Can improvement in photosynthesis increase crop yields? - Plant Cell Environ. 29: 315–330, 2006.CrossRefPubMedGoogle Scholar
  46. Marenco R.A., Antezana-Vera S.A., Nascimento H.C.S.: Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. - Photosynthetica 47: 184–190, 2009.CrossRefGoogle Scholar
  47. Martin B., Thorstenson Y.R.: Stable carbon isotope composition (deltaC), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F(1) hybrid. - Plant Physiol. 88: 213–217, 1988.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Medrano H., Escalona J. M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. - Ann. Bot.-London 89: 895–905, 2002.CrossRefGoogle Scholar
  49. Ochogavía J. M., López M., Rigo M. et al.: Characterization of the population of tomàtiga de Ramellet of the Balearic Islands - Conselleria de Presidència. Agricultura i Pesca. Illes Balears, 2011. [In Catalan]Google Scholar
  50. Parry M.A.J., Flexas J., Medrano H.: Prospects for crop production under drought: research priorities and futures directions. - Ann. Appl. Biol. 147: 211–226, 2005.CrossRefGoogle Scholar
  51. Rosado-Souza L., Scossa F., Chaves I.S. et al: Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. - Planta 242: 677–691, 2015.CrossRefPubMedGoogle Scholar
  52. Seibt U., Rajabi A., Griffiths H., Berry J.A.: Carbon isotopes and water use efficiency: sense and sensitivity. - Oecologia 155: 441–454, 2008.CrossRefPubMedGoogle Scholar
  53. Sharkey T.D.: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. - Bot. Rev. 51: 53–105, 1985.CrossRefGoogle Scholar
  54. Sheffield J., Wood E.F.: Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle. - C J. Climate 21: 432–458, 2008.CrossRefGoogle Scholar
  55. Soolanayakanahally R., Guy R. D., Silim S. N. et al.: Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). - Plant Cell Environ. 32: 1821–1832, 2009.CrossRefPubMedGoogle Scholar
  56. The Tomato Genome Consortium: The tomato genome sequence provides insights into fleshy fruit evolution. - Nature 485: 635–641, 2012.CrossRefGoogle Scholar
  57. Valladares F., Gianoli E., Gómez J.M.: Ecological limits to plant phenotypic plasticity. - New Phytol. 176: 749–763, 2007.CrossRefPubMedGoogle Scholar
  58. Warren C.R., Adams M.A.: Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. - Plant Cell Environ. 29: 192–201, 2006.CrossRefPubMedGoogle Scholar
  59. White J.W., Montes R.C.: Variation in parameters related to leaf thickness in common bean (Phaseolus vulgaris L.). - Field Crop. Res. 91: 7–21, 2005.CrossRefGoogle Scholar
  60. Xu J., Ranc N., Muños S. et al.: Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. - Theor. Appl. Genet. 126: 567–581, 2013.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • M. Fullana-Pericàs
    • 1
  • M. À. Conesa
    • 1
  • S. Soler
    • 2
  • M. Ribas-Carbó
    • 1
  • A. Granell
    • 3
  • J. Galmés
    • 1
  1. 1.Research Group on Plant Biology under Mediterranean Conditions, Department of BiologyUniversitat de les Illes BalearsPalmaSpain
  2. 2.Institut de Conservació i Millora de l’Agrodiversitat ValencianaUniversitat Politècnica de ValènciaValènciaSpain
  3. 3.Institut de Biologia Molecular i Cel·lular de Plantes, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations