Skip to main content
Log in

Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat genotypes

  • Original Paper
  • Published:
Photosynthetica

Abstract

Our experiment was conducted in order to find out effects of paclobutrazol (PBZ; 30 μl l–1) on morphology, photosynthetic process, and stress markers under water surplus and deficit conditions in several wheat genotypes. Study revealed that relative water content (RWC), photosynthetic rate, and maximal quantum yield of PSII (FV/FM) was improved after a PBZ application both under irrigation and water deficit across the genotypes, while the stomatal conductance was reduced. Further, the application of PBZ led to reduced leaf area in wheat genotypes. Moreover, a proline content was higher in the wheat genotypes under water stress as compared to the irrigated plants. The application of PBZ led to downregulation of the proline content under water deficit, while there was no significant change in the content and activity under irrigation with or without the PBZ treatment. These findings indicated that due to the application of PBZ the wheat genotypes might sense a lower stress level (indicated by the proline content) and better drought tolerance (according to RWC and photosynthetic characteristics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

Chl:

chlorophyll

DAS:

days after sowing

DM:

dry mass

FM:

fresh mass

FV/FM :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

LA:

leaf area

OD:

optical density

PBZ:

paclobutrazol

P N :

photosynthetic rate

P5CS:

pyrroline-5-carboxylate synthase

RWC:

relative water content

Tm :

melting temperature

TM:

turgid mass

V:

volume

References

  • Ali Q., Ashraf M.: Induction of drought tolerance in maize due to exogenous application of threolose: growth, photosynthesis, water relation and oxidative defense mechanism. — Agron. Crop Sci. 1: 1–14, 2011.

    Google Scholar 

  • Amin B., Mahleghah G., Mahmood H.M.R. et al.: Evaluation of intraction effect of drought stress with ascorbic acid and salicylic acid on some of physiological and biochemical parameters in okra. — Res. J. Biol. Sci. 4: 380–387, 2009.

    Google Scholar 

  • Amini S., Ghobadi C., Yamchi A.: Proline accumulation and osmotic stress: an overview of P5CS gene in plants. — J. Plant Mol. Breed. 3: 44–55, 2015.

    Google Scholar 

  • Anon.: Paclobutrazol Plant Growth Regulator for Fruit. Pp. 42. I.C.I. Technical Data Sheet, 1984.

    Google Scholar 

  • Arnon D.I.: Copper enzymes in isolated chloroplasts, polyphenoxide in Beta vulgaris. — Plant Physiol. 24: 1–15. 1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzedine F.H., Gherroucha, Baka M.: Improvement of salt tolerance in durum wheat by ascorbic acid application. — J. Stress Physiol. Biochem. 7: 27–33, 2011.

    Google Scholar 

  • Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973

    Article  CAS  Google Scholar 

  • Berova M., Zlatev Z.: Physiological response of paclobutrazoltreated triticale plants to water stress. — Biol. Plantarum 46: 133–136, 2003.

    Article  CAS  Google Scholar 

  • Breštič M., Živčák M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. — In: Rout G.R., Das A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87–131. Springer, Dordrecht 2013

    Google Scholar 

  • Chaturvedi A.K., Vashistha R.K., Prasad P. et al.: Influence of foliar spray with paclobutrazol and ethepon on growth and photosynthetic behavior of Saussurea costus (Falc.) Lipsch.-An endangered medicinal and aromatic herb. — Nature Sci. 7: 53–62, 2009.

    Google Scholar 

  • Dalziel J., Lawrence D.K.: Biochemical and biological effects of Kaurene oxidase inhibitors, such as paclobutrazol. — In: Menhenett, R., Lawrence, D.K. (ed.): Biochemical Aspects of Synthetic and Naturally Occurring Plant Growth Retardants. Monograph II. Pp. 43–57. Brit. Plant Growth Regul. Group, UK 1984.

    Google Scholar 

  • Davis T.D., Steffens G.L., Sankhla N.: Triazole plant growth regulators. — In: Janick J. (ed.): Horticultural Reviews, Vol. 10. Pp. 63–105. John Wiley & Sons Inc., Toronto 1988.

    Google Scholar 

  • Debnath M.: Responses of Bacopa monnieri to salinity and drought stress in vitro. — J. Medic. Plants Res. 2: 347–351, 2008.

    Google Scholar 

  • Dwivedi S.K., Singh V.P., Arora A.: Combined effect of cytokinin, paclobutrazol and ascorbic acid on nitrogen metabolism and yield of wheat (Triticum aestivum L.) under water deficit stress condition. — Indian J. Plant Physiol. 17: 259–267, 2012.

    Google Scholar 

  • Ejaz B., Sajid Z.A., Aftab F.: Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress. — Turk. J. Biol. 36: 630–640, 2012.

    CAS  Google Scholar 

  • El-Hafid R., Smith D.H., Karrou M. et al.: Physiological responses of spring durum wheat cultivars to early season drought in a mediterranian environment. — Ann. Bot.-London 81: 363–370, 1998.

    Article  Google Scholar 

  • Fernández J.A., Balenzategui L., Bañón S. et al.: Induction of drought tolerance by paclobutrazol and irrigation deficit in Phillyrea angustifolia during the nursery period. — Sci. Hortic.-Amsterdam 107: 277–283, 2006.

    Article  Google Scholar 

  • Fletcher R.A., Gilley A., Sankhla N. et al.: Triazoles as plant growth regulators and stress protectants. — In: Janick J. (ed.): Horticultural Reviews, Vol. 24. Pp. 55–138. John Wiley & Sons Inc., Toronto 1988.

    Google Scholar 

  • Grossi J.A.S., de Moraes P.J., Tinoco S.A. et al.: Effects of paclobutrazol on growth and fruiting characteristics of ´Pitanga´ornamental pepper. — Acta Hortic. 683: 333–336, 2005.

    Article  CAS  Google Scholar 

  • Hare P.D., Cress W.A., van Staden J.: The involvement of cytokinins in plant responses to environmental stress. — Plant Growth Regul. 23: 79–103, 1997.

    Article  CAS  Google Scholar 

  • Hiscox J.D., Israelstam G.F.A.: A method for the extraction of chlorophyll from leaf tissue without maceration. — Can. J. Bot. 57: 1332–1334, 1979.

    Article  CAS  Google Scholar 

  • IPCC.: Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 104. Forth AR Report, Geneva 2007.

    Google Scholar 

  • Jaleel C.A., Manivannan P., Sankar B. et al.: Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. — Colloid. Surface. B 60: 201–206, 2007.

    Article  CAS  Google Scholar 

  • Jungklang J., Saengnil K., Uthaibutra J.: Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. — Saudi J. Biol. Sci. in press, 2015. http://dx.doi.org/10.1016/j.sjbs.2015.09.017

    Google Scholar 

  • Jungklang, J., Saengnil, K.: Effect of paclobutrazol on Patumma cv. Chiang Mai Pink under water stress. — Songklanakarin J. Sci. Technol. 34: 361–366, 2012.

    CAS  Google Scholar 

  • Keyvan S.: The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. — J. Anim. Plant Sci. 8: 1051–1060, 2010.

    Google Scholar 

  • Lawlor D.W.: The effect of water deficit on photosynthesis. — In: Smirnoff N. (ed.): Environment and Plant Metabolism, Flexibility and Acclimation. Pp. 129–160. BIOS Sci. Publ., London 1995.

    Google Scholar 

  • Navarro A., Sánchez-Blanco J.M., Bañón S.: Influence of paclobutrazol on water consumption and plant performance of Arbutus unedo seedlings. — Sci. Hortic.-Amsterdam 111: 133–139. 2007.

    Article  CAS  Google Scholar 

  • Poustini K., Siosemardeh A., Ranjbar M.: Proline accumulation as a response to salt stress in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance. — Genet. Resour. Crop Ev. 54: 925–934, 2007.

    Article  CAS  Google Scholar 

  • Qiu J., Wang R.M., Yan J.Z. et al.: Seed film coating with uniconazole improves rape seedling growth in relation to physiological changes under water logging stress. — Plant Growth Regul. 47: 75–81, 2005.

    Article  CAS  Google Scholar 

  • Rady M., Gaballah M.S.: Improving barley yield grown under water stress conditions. — Res. J. Rescent Sci. 1: 1–6, 2012.

    Article  CAS  Google Scholar 

  • Tatar O., Gevrek M.N.: Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. — Asian J. Plant Sci. 7: 409–412, 2008.

    Article  CAS  Google Scholar 

  • Shao H.B., Liang Z.S., Shao M.A.: Changes of some antioxidative enzymes under soil water deficits among 10 wheat genotypes at maturation stage. — Colloid. Surface B 45: 7–13, 2005.

    Article  Google Scholar 

  • Slama I., Ghnaya T., Savouré A. et al.: Combined effects of longterm salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. — CR. Biol. 331: 442–451, 2008.

    Article  CAS  Google Scholar 

  • Subhan D., Murthy S.D.S.: Senescence retarding effect of metal ions: pigment and protein contents and photochemical activities of detached primary leaves of wheat. — Photosynthetica 39: 53–58, 2001.

    Article  CAS  Google Scholar 

  • Surender Reddy P., Jogeswar G., Rasineni G.K. et al.: Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum (Sorghum bicolor L.) Moench. — Plant Physiol. Bioch. 94: 104–113, 2015.

    Article  CAS  Google Scholar 

  • Weatherley P.E.: Studies in the water relations of the cotton plant. The field measurements of water deficit in leaves. — New Phytol. 49: 81–97, 1950.

    Article  Google Scholar 

  • Zaharieva M., Gaulin E., Havaux M. et al.: Drought and heat responses in the wild wheat relative Aegilops geniculata Roth. — Crop Sci. 41: 1321–1329, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dwivedi.

Additional information

Acknowledgement: Financial assistance provided by ICAR is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, S.K., Arora, A. & Kumar, S. Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat genotypes. Photosynthetica 55, 351–359 (2017). https://doi.org/10.1007/s11099-016-0652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0652-5

Additional key words

Navigation