Skip to main content
Log in

Effect of sodium nitroprusside on responses of Melissa officinalis to bicarbonate exposure and direct Fe deficiency stress

  • Published:
Photosynthetica

Abstract

In our study, one-month-old Melissa officinalis plants were subjected to Fe-deficiency treatments, such as 10 µM Fe (as direct iron deficiency, DD), and 30 µM Fe + 10 mM NaHCO3 + 0.5 g l−1 CaCO3 (as indirect iron deficiency, ID), and 30 µM Fe (as control) for 14 d. Both Fe-deficiency types reduced plant growth, photosynthetic pigment contents, an active Fe content in roots and leaves, root Fe(III)-reducing capacity, Fe-use efficiency, maximal quantum yield of PSII photochemistry, a ratio of variable to basic fluorescence, and activities of antioxidant enzymes, while they increased lipid peroxidation and a H2O2 content in leaves. These effects were more pronounced in plants exposed to ID with bicarbonate than those of DD plants. We showed that sodium nitroprusside (SNP), as NO donor, could ameliorate the adverse effects of bicarbonate on above traits. The methylene blue, as NO blocker, reversed the protective effects conferred by SNP in the ID-treated plants as well as DD plants. These findings suggests that NO protects photosynthesis and growth of IDtreated plants as well as DD plants by contribution in availability and/or delivery of metabolically active iron or by changing activities of reactive oxygen species-scavenging enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

C:

control

CAT:

catalase

Car:

carotenoids

Chl:

chlorophyll

DD:

direct Fe deficiency

DHAR:

dehydroascorbate reductase

DM:

dry mass

F0 :

minimal fluorescence yield of the dark-adapted state

Fv/Fm :

maximal quantum yield of PSII photochemistry

FM:

fresh mass

ID:

indirect Fe deficiency

MDA:

malondialdehyde

MB:

methylene blue

NO:

nitric oxide

POX:

peroxidase

ROS:

reactive oxygen species

SNAP:

S-nitroso-N-acetylpenicillamine

SNP:

sodium nitroprusside

SOD:

superoxide dismutase

References

  • Alcántara E., Romera F.J., Caáete M., de la Guardia M.D.: Effects of bicarbonate and iron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock “Nemaguard”. - C J. Plant Nutr. 23: 1607–1617, 2000.

    Article  Google Scholar 

  • Amooaghaie R., Nikzad K.: The role of nitric oxide in priming induced low temperature tolerance in two genotypes of tomato. - Seed Sci. Res. 23: 123–131, 2013.

    Article  CAS  Google Scholar 

  • Amooaghaie R., Tabatabaei F., Ahadi A.M.: Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nano silver and nitrate silver stresses. - Ecotoxicol. Environ. Safe. 113: 259–270, 2015.

    Article  CAS  Google Scholar 

  • Aebi H.: Catalase in vitro. - Methods Enzymol. 105: 121–126, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan K., Rajendran C., Kulandaivelu G.: Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. - Photosynthetica 38: 477–479, 2000.

    Article  CAS  Google Scholar 

  • Beligni M.V., Lamattina L.: Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. - Planta 208: 337–344, 1999.

    Article  CAS  Google Scholar 

  • Cellini A., Corpas F.J., Barroso J.B., Masia A.: Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants. - C J. Plant Physiol. 168: 1543–1549, 2011.

    Article  CAS  Google Scholar 

  • Chen W.W., Yang J.L., Qin C. et al.: Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. - Plant Physiol. 154: 810–819, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouliaras V., Therios I., Molassiotis A. et al.: Iron chlorosis in grafted sweet orange (Citrus sinensis L.) plants: physiological and biochemical responses. - Biol. Plantarum 48: 141–144, 2004.

    Article  CAS  Google Scholar 

  • Cragan J.D.: Teratogen update: methylene blue. - Teratology 60: 42–48, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Ding F., Wang X.F., Shi Q.H. et al.: Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient chinese cabbage (Brassica chinensis L.). - Agr. Sci. China 7: 168–179, 2008.

    Article  CAS  Google Scholar 

  • Doerge D.R., Divi R.L., Churchwell M.I.: Identification of the colored guaiacol oxidation product produced by peroxidases. - Anal. Biochem. 250: 10–17, 1997.

    Article  CAS  PubMed  Google Scholar 

  • García M.J., Suárez V., Romera F.J., et al.: A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. - Plant Physiol. Bioch. 49: 537–544, 2011.

    Article  Google Scholar 

  • Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909–930, 2010.

    Article  CAS  Google Scholar 

  • Graziano M., Beligni M.V., Lamattina L.: Nitric oxide improves internal iron availability in plants. - Plant Physiol. 130: 1852–1859, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano M., Lamattina L.: Nitric oxide and iron in plants: an emerging and converging story. - Trends Plant Sci. 10: 4–8, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Guerinot M.L.: Iron. - In: Hell R.I., Mendel R.R. (ed.): Cell Biology of Metals and Nutrients. Pp. 75–94, Springer, Heidelberg - Dordrecht - London - New York 2010.

    Chapter  Google Scholar 

  • Health R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid and peroxidation. - Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  Google Scholar 

  • Jelali N., Dell'Orto M., Rabhi M. et al.: Physiological and biochemical responses for two cultivars of Pisum sativum (“Merveille de Kelvedon” and “Lincoln”) to iron deficiency conditions. - Sci. Hortic.-Amsterdam 124: 116–121, 2010.

    Article  CAS  Google Scholar 

  • Jin C.W., Du S.T., Shamsi I. H., et al.: NO synthase-generated NOacts downstream of auxin in regulating Fe-deficiencyinduced root branching that enhances Fe-deficiency tolerance in tomato plants. - C J. Exp. Bot. 62: 3875–3884, 2011.

    Article  CAS  Google Scholar 

  • Kumar P., Tewari R.K., Sharma P.N.: Sodium nitroprussidemediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. - AoB Plants 2010: plq002, 2010.

  • Kumari N., Sharma V., Mikosch M. et al.: Seasonal photosynthetic performance and nutrient relations of Butea monosperma TAUB in comparison to two other woody species of a seasonal deciduous forest in SE-Rajasthan and to planted trees in the area. - Ind. J. For. 26: 116–126, 2005.

    Google Scholar 

  • Laspina N.V., Groppa M.D., Tomaro M.L., Benavides M.P.: Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. - Plant Sci. 169: 323–330, 2005.

    Article  CAS  Google Scholar 

  • Liang W.B., Xue S.G., Shen J.H., Wang P.: Effects of manganese stress on photosythesis and chlorophyll fluorescence parameters of Phytolacca americana. - Acta Ecol. Sin. 30: 619–625, 2010.

    CAS  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lucena C., Romera F.J., Rojas C.L. et al.: Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of Strategy I plants. - Funct. Plant Biol. 34: 1002–1009, 2007.

    Article  CAS  Google Scholar 

  • Mengel K.: Iron availability in plant tissues - iron chlorosis on calcareous soils. - Plant Soil 165: 275–283, 1994.

    Article  CAS  Google Scholar 

  • Morales F., Belkhodja R., Abadía A., Abadía J.: Photosystem II efficiency and mechanisms of energy dissipation in iron deficient, field-grown pear trees (Pyrus communis L.). - Photosynth. Res. 63: 9–21, 2000.

    Article  CAS  PubMed  Google Scholar 

  • M¡¯Sehli W., Youssfi S., Donnini S. et al.: Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. - Plant Soil 312: 151–162, 2008.

    Article  Google Scholar 

  • Mukherjee S.P., Choudhuri M. A.: Implications of water stressinduced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. - Physiol. Plantarum 58:166–170, 1983.

    Article  CAS  Google Scholar 

  • Nakano Y., Asada K.: Spinach chloroplasts scavenge hydrogen peroxide on illumination. - Plant Cell Physiol. 21: 1295–1307, 1980.

    CAS  Google Scholar 

  • Nikolic M., Römheld V., Merkt N.: Effect of bicarbonate on uptake and translocation of 59Fe in two grapevine rootstocks differing in their resistance to Fe deficiency chlorosis. - Vitis 39:145–149, 2000.

    CAS  Google Scholar 

  • Pestana M., de Varennes A., Abadía J., Faria E.A.: Differential tolerance to iron deficiency of Citrus rootstocks grown in nutrient solution. - Sci. Hortic.-Amsterdam 104: 25–36, 2005.

    Article  CAS  Google Scholar 

  • Ramirez L., Simontacchi M., Murgia I.: Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis. - Plant Sci. 181: 582–592, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Romera F.J., Alcántara E., de la Guardia M.D.: Influence of bicarbonate and metal ions on the development of root Fe (III) reducing capacity by Fe-deficient cucumber (Cucumis sativus) plants. - Physiol. Plantarum 101: 143–148, 1997.

    Article  CAS  Google Scholar 

  • Ruan H.H., Shen W.B., Xu L.L.: Nitric oxide modulates the activities of plasma membrane H+ - ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress. - Acta Bot. Sin. 46: 415–422, 2004.

    CAS  Google Scholar 

  • Sun B.T., Jing Y, Chen K.M. et al.: Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). - C J. Plant Physiol. 164: 536–543, 2007.

    Article  CAS  Google Scholar 

  • Vladkova R., Dobrikova A.G., Singh R. et al.: Photoelectron transport ability of chloroplast thylakoid membranes treated with NOdonor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. - Nitric Oxide 24: 84–90, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Xu J., Yin H.X., Liu X.J. et al.: Nitric oxide alleviates Fe deficiency-induced stress in Solanum nigrum. - Biol. Plantarum 53: 784–788, 2009.

    Article  CAS  Google Scholar 

  • Zhang X.W., Dong Y.J., Qiu1 X.K. et al.: Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. - Plant Soil Environ. 58: 111–120, 2012.

    CAS  Google Scholar 

  • Zhou B., Guo Z., Xing J., Huang B.: Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. - C J. Exp. Bot. 56: 3223–3228, 2005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Amooaghaie.

Additional information

Acknowledgements

This study was supported by a financial grant of Shahrekord University, Iran. The authors are grateful to Dr. Akbar Mostajeran for his kind cooperation and help in providing laboratory facilities for this research, and for his guidance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amooaghaie, R., Roohollahi, S. Effect of sodium nitroprusside on responses of Melissa officinalis to bicarbonate exposure and direct Fe deficiency stress. Photosynthetica 55, 153–163 (2017). https://doi.org/10.1007/s11099-016-0240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0240-8

Additional key words

Navigation