Skip to main content

Advertisement

Log in

Green light enhances growth, photosynthetic pigments and CO2 assimilation efficiency of lettuce as revealed by ‘knock out’ of the 480–560 nm spectral waveband

  • Published:
Photosynthetica

Abstract

Adding green component to growth light had a profound effect on biomass accumulation in lettuce. However, conflicting views on photosynthetic efficiency of green light, which have been reported, might occur due to nonuniform light sources used in previous studies. In an attempt to reveal plausible mechanisms underlying the differential photosynthetic and developmental responses to green light, we established a new way of light treatment modeled according to the principle of gene “knock out”. Lettuce (Lactuca sativa L. var. youmaicai) was grown under two different light spectra, including a wide spectrum of light-emitting diode (LED) light (CK) and a wide spectrum LED light lacking green (480–560 nm) (LG). Total PPFD was approximately 100 µmol(photon) m−2 s−1 for each light source. As compared to lettuce grown under CK, shoot dry mass, photosynthetic pigment contents, total chlorophyll to carotenoids ratio, absorptance of PPFD, and CO2 assimilation showed a remarkable decrease under LG, although specific leaf area did not show significant difference. Furthermore, plants grown under LG showed significantly lower stomatal conductance, intercellular CO2 concentration, and transpiration compared with CK. The plants under CK exhibited significantly higher intrinsic quantum efficiency, respiration rate, saturation irradiance, and obviously lower compensation irradiance. Finally, we showed that the maximum ribulose-1,5-bisphosphate-saturated rate of carboxylation, the maximum rate of electron transport, and rate of triosephosphate utilization were significantly reduced by LG. These results highlighted the influence of green light on photosynthetic responses under the conditions used in this study. Adding green component (480–560 nm) to growth light affected biomass accumulation of lettuce in controllable environments, such as plant factory and Bioregenerative Life Support System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular carbon dioxide concentration

Car:

carotenoids

Chl:

chlorophyll

CK:

wide-spectrum LED light

DM:

dry mass

E :

transpiration rate

g s :

stomatal conductance

I c :

compensation irradiance

I sat :

saturation irradiance

J max :

the maximum rate of electron transport

LED:

light-emitting diode

LG:

wide-spectrum LED light lacking green, 480–560 nm wavebands “knock out”

P N :

net photosynthetic rate

P Nmax :

light-saturated net photosynthetic rate

R D :

respiration rate

RuBP:

ribulose-1,5-bisphosphate

SLA:

specific leaf area

V cmax :

the maximum RuBP-saturated rate of carboxylation

V TPU :

rate of triose-phosphate utilization

a:

intrinsic quantum efficiency

ΦPSII :

quantum yield of PSII electron transport

References

  • Balegh S.E., Biddulph O.: The photosynthetic action spectrum of the bean plant. - Plant Physiol. 46: 1–5, 1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen C.R., Vogelmann T.C.: Do changes in light direction affect absorption profiles? - Funct. Plant Biol. 37: 403–412, 2010.

    Article  Google Scholar 

  • Björkman O.: Further studies on differentiation of photosynthetic properties in sun and shade ecotypes of Solidago virgaurea. - Physiol. Plantarum 21: 84–99, 1968.

    Article  Google Scholar 

  • Calvin M.: The photosynthetic carbon cycle. - C J. Chem. Soc. 78: 1895–1915, 1956.

    Article  Google Scholar 

  • Chow W.S., Melis A., Anderson J.M.: Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. - C P. Natl. Acad. Sci. USA 87: 7502–7506, 1990.

    Article  CAS  Google Scholar 

  • Dong C., Fu Y., Liu G., Liu H.: Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. - C J. Agron. Crop Sci. 200: 219–230, 2014.

    Article  CAS  Google Scholar 

  • Evans J.R.: Developmental constraints on photosynthesis: effects of light and nutrition. - In: Baker N.R. (ed.): Photosynthesis and the Environment. Pp. 281–308. Kluwer Academic Publishers, Dordrecht 1996.

    Google Scholar 

  • Evans J.R.: The dependence of quantum yield on wavelength and growth irradiance. - Funct. Plant Physiol. 14: 69–79, 1987.

    Google Scholar 

  • Evans J.R., Poorter H.: Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. - Plant Cell Environ. 24: 755–767, 2001.

    Article  CAS  Google Scholar 

  • Farquhar G.D., von Caemmerer S.V., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78–90, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Foyer C.H., Neukermans J., Queval G. et al.: Photosynthetic control of electron transport and the regulation of gene expression. - C J. Exp. Bot. 63: 1637–1661, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Gates D.M., Keegan H.J., Schleter J.C. et al.: Spectral properties of plants. - Appl. Opt. 4: 11–20, 1965.

    Article  Google Scholar 

  • Habermann G., Machado E.C., Rodrigues J.D., Medina C.L.: CO2 assimilation, photosynthetic light response curves, and water relations of 'p¨ºra' sweet orange plants infected with Xylella fastidiosa. - Braz. J. Plant Physiol. 15: 79–87, 2003.

    Article  CAS  Google Scholar 

  • Hogewoning S.W.: Photosynthetic quantum yield dynamics: from photosystems to leaves. - Plant Cell 24: 1921–1935, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. - C J. Exp. Bot. 11: 3107–3117, 2010.

    Article  Google Scholar 

  • Hoover W.H.: The dependence of carbon dioxide assimilation in a higher plant on wavelength of radiation. - Smithson. Inst. Misc. Collect. 95: 1–13, 1937.

    Google Scholar 

  • Inada K.: Action spectra for photosynthesis in higher plants. - Plant Cell Physiol. 17: 355–365, 1976.

    Google Scholar 

  • Ichiro T., Takashi F., Takeshi I. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. - Plant Cell Physiol. 50: 684–697, 2009.

    Article  Google Scholar 

  • Johkan M., Shoji K., Goto F. et al.: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. - Environ. Exp. Bot. 75: 128–133, 2012.

    Article  CAS  Google Scholar 

  • Kim H.H., Goins G.D., Wheeler R.M. et al.: Green-light supplementation for enhanced lettuce growth under red-and bluelight- emitting diodes.- HortScience 39: 1617–1622, 2004.

    PubMed  Google Scholar 

  • Kim H.H., Goins G.D., Wheeler R.M. et al.: Stomatal conductance of lettuce grown under or exposed to different light qualities. - Ann. Bot. 94: 691–697, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavergne J, Joliot P.: Thermodynamics of the excited states of photosynthesis. http://www.biophysics.org/Portals/1/PDFs/ Education/lavergne.pdf, 2000.

    Google Scholar 

  • Lin K.H., Huang M.Y., Huang W.D. et al., The effects of red, blue and white light-emitting diodes (LEDs) on growth, development and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). - Sci. Hortic.- Amsterdam 150: 86–91, 2013.

    Article  Google Scholar 

  • Long S.P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. - C J. Exp. Bot. 54: 2393–2401, 2003.

    Article  CAS  Google Scholar 

  • Martin W., Schnarrenberger C.: The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. - Curr Genet. 32: 1–18, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Mauzerall D.: Thermodynamics of primary photosynthesis.- Photosynth. Res. 116: 363–366, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A.: Dynamics of photosynthetic membrane composition and function. - BBA-Bioenergetics 1058: 87–106, 1991.

    Article  CAS  Google Scholar 

  • Ouzounis T., Rosenqvist E., Ottosen C.O.: Spectral effects of artificial light on plant physiology and secondary metabolism: a review. - HortScience 50: 1128–1135, 2015.

    CAS  Google Scholar 

  • Paradiso R., Meinen E., Snel J.F.H. et al.: Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose. - Sci. Hortic.-Amsterdam. 127: 548–554, 2011.

    Article  CAS  Google Scholar 

  • Pfannschmidt T.: Acclimation to varying light qualities: Toward the functional relationship of state transitions and adjustment of photosystem stoichiometry. - C J. Phycol. 41: 723–725, 2005.

    Article  Google Scholar 

  • Porra R.J., Thompson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. - BBABioenergetics 975: 384–394, 1989.

    Article  CAS  Google Scholar 

  • Rowan K.S.: Photosynthetic Pigments of Algae. Pp. 235. Cambridge University Press, Cambridge 1989.

    Google Scholar 

  • Shao L., Fu Y., Liu H. et al.: Changes of the antioxidant capacity in Gynura bicolor DCunder different light sources. - Sci. Hortic.-Amsterdam 184: 40–45, 2015.

    Article  CAS  Google Scholar 

  • Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. - Remote Sens. Environ. 81: 337–354, 2002.

    Article  Google Scholar 

  • Su N., Wu Q., Shen Z. et al.: Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. - Plant Growth Regul. 73: 227–235, 2014.

    Article  CAS  Google Scholar 

  • Sun J., Nishio J.N., Vogelmann T.C.: Green light drives CO2 fixation deep within leaves. - Plant Cell Physiol. 39: 1020–1026, 1998.

    Article  CAS  Google Scholar 

  • Taiz L., Zeiger E.: Plant Physiology, 5th ed. Pp. 792. Sinauer Assoc. Inc. Publ., Sunderland 2006.

    Google Scholar 

  • Talbott L.D., Nikolova G., Ortiz A. et al.: Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. - Am. J. Bot. 89: 366–368, 2002.

    Article  PubMed  Google Scholar 

  • Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. - Plant Cell Physiol. 50: 684–697, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Thompson W.A., Huang L.K., Kriedemann L.H.: Photosynthetic response to light and nutrients in sun-tolerant and shadetolerant rainforest trees. II. leaf gas exchange and component processes of photosynthesis. - Funct. Plant Biol. 19: 19–42, 1992.

    CAS  Google Scholar 

  • Walters R.G., Horton P.: Acclimation of Arabidopsis thaliana to the light environment: Changes in photosynthetic function. - Planta 197: 306–312, 1995.

    CAS  PubMed  Google Scholar 

  • Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. - C J. Photoch. Photobio. B 96: 30–37, 2009.

    Article  CAS  Google Scholar 

  • Wang M., Xie B., Fu Y. et al.: Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. - Photosynth. Res. 126: 351–362, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Wilson P.J., Thompson K., Hodgson J.G.: Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. - New Phytol. 143: 155–162, 2002.

    Article  Google Scholar 

  • Wu Q., Su N., Shen W. et al.: Analyzing photosynthetic activity and growth of Solanum lycopersicum seedlings exposed to different light qualities. - Acta Physiol. Plant. 36: 1411–1420, 2014.

    Article  CAS  Google Scholar 

  • Wullschleger S.D.: Biochemical limitations to carbon assimilation in C3 plants - a retrospective analysis of the A/Ci curves from 109 species. - C J. Exp. Bot. 44: 907–920, 1993.

    Article  CAS  Google Scholar 

  • Ye Z.P., Yu Q.: A coupled model of stomatal conductance and photosynthesis for winter wheat. - Photosynthetica 46: 637–640, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Liu.

Additional information

Acknowledgements

This work was supported by the National High-Tech Research and Development Program of China (No. 2013AA103004).

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Fu, Y., Wang, M. et al. Green light enhances growth, photosynthetic pigments and CO2 assimilation efficiency of lettuce as revealed by ‘knock out’ of the 480–560 nm spectral waveband. Photosynthetica 55, 144–152 (2017). https://doi.org/10.1007/s11099-016-0233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0233-7

Additional key words

Navigation