Skip to main content
Log in

Photosynthetic responses of Chrysanthemum morifolium to growth irradiance: morphology, anatomy and chloroplast ultrastructure

  • Published:
Photosynthetica

Abstract

Seedlings of Chrysanthemum, cultivar ‘Puma Sunny’, were grown under a range of shading regimes (natural full sunlight, 55, 25, and 15% of full sunlight) for 18 days. Here, we characterized effects of varying light regimes on plant morphology, photosynthesis, chlorophyll fluorescence, anatomical traits, and chloroplast ultrastructure. We showed that leaf color was yellowish-green under full sunlight. Leaf area, internode length, and petiole length of plants were the largest under 15% irradiance. Net photosynthetic rate, water-use efficiency, PSII quantum efficiency, and starch grain were reduced with decreasing irradiance from 100 to 15%. Heavy shading resulted in the partial closure of PSII reaction centers and the CO2 assimilation was restricted. The results showed the leaves of plants were thinner under 25 and 15% irradiance with loose palisade tissue and irregularly arranged spongy mesophyll cells, while the plants grown under full sunlight showed the most compact leaf palisade parenchyma. Irradiance lesser than 25% of full sunlight reduced carbon assimilation and led to limited plant growth. Approximately 55% irradiance was suggested to be the optimal for Chrysanthemum morifolium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

g s :

stomatal conductance

DAT:

days of treatment

DM:

dry mass

E :

transpiration rate

ETR:

electron transport rate

Fm :

maximal fluorescence yield of the light-adapted state

Fm':

maximal fluorescence yield of the light-adapted state

F0':

minimal fluorescence yield of the light-adapted state

Fs :

steady-state fluorescence yield

Fv/Fm :

maximal quantum yield of PSII photochemistry

LA:

leaf area

NPQ:

nonphotochemical quenching

P N :

net photosynthetic rate

ΦPSII :

effective quantum yield of PSII photochemistry

qP :

photochemical quenching coefficient

SLA:

specific leaf area

WUE:

water-use efficiency

References

  • Ballare C.: Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. - Trends Plant Sci. 4: 97–102, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. - Photosynth. Res. 25: 173–185, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro J., Trione S.: Physiological, morphological and biochemical responses to shade of Trichloris crinita, a forage grass from the arid zone of Argentina. - C J. Arid Environ. 68: 337–347, 2007.

    Article  Google Scholar 

  • Correia M.J., Osório M.L., Osório J. et al.: Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. - Environ. Exp. Bot. 58: 75–84, 2006.

    Article  CAS  Google Scholar 

  • Craven D.S., Gulamhussein S., Berlyn G.P.: Physiological and anatomical responses of Acacia koa (Gray) seedlings to varying light and drought conditions. - Environ. Exp. Bot. 69: 205–213, 2010.

    Article  Google Scholar 

  • Dai Y.J., Shen Z.G., Liu Y. et al.: Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. - Environ. Exp. Bot. 65: 177–182, 2009.

    Article  CAS  Google Scholar 

  • Deng Y.M., Li C.C., Shao Q.S. et al: Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure. - Plant Physiol. Bioch. 55: 93–102, 2012..

    Article  CAS  Google Scholar 

  • Deng Y.M., Shao Q.S., Li C.C.: Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology. - Sci. Hortic.-Amsterdam 144: 19–28, 2012b.

    Article  Google Scholar 

  • Dimassi-Theriou K., Bosabalidis A.M.: Effects of light, magnesium and sucrose on leaf anatomy, photosynthesis, starch and total sugar accumulation, in kiwifruit cultured in vitro. - Plant Cell Tiss. Org. 47: 127–134, 1997.

    Article  Google Scholar 

  • Evans J.R., Poorter H.: Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. - Plant Cell Environ. 24: 755–767, 2001.

    Article  CAS  Google Scholar 

  • Evans J.R.: Leaf anatomy enables more equal access to light and CO2 between chloroplast. - New Phytol. 143: 93–104, 1999.

    Article  Google Scholar 

  • Favaretto V.F., Martinez C.A., Soriani H.H. et al.: Differential responses of antioxidant enzymes in pioneer and latesuccessional tropical tree species grown under sun and shade conditions. - C J. Exp. Bot. 70: 20–28, 2011.

    Article  CAS  Google Scholar 

  • Fu W., Li P. Wu Y. et al.: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. - Sci. Hortic.-Amsterdam 135: 45–51, 2012.

    Article  CAS  Google Scholar 

  • Garty J., Tamir O., Hassid I. et al: Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. - C J. Environ. Qual. 30: 884–893, 2001.

    Article  CAS  Google Scholar 

  • Genty B., Briantais J.M., Braker N.R.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescene. - Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Genty B., Harbinson J.M., Baker N.R.: Relative quantum efficiencies of the two photosystems of and photorespiratory non-respiratory conditions. - Plant Physiol. Bioch. 28: 1–10, 1990.

    CAS  Google Scholar 

  • Goldschmidt E.E., Huber S.C.: Regulation of phosynthesis by end-product accumulation in leaves of plants storing starch, sucrose and hexose sugars. - Plant Physiol. 99: 1443–1448, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoriou K., Pontikis K., Vemmos S.: Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). - Photosynthetica 45: 172–181, 2007.

    Article  Google Scholar 

  • Guidi L., Tonini M., Soldatini G.F.: Effects of high light and ozone fumigation on photosynthesis in Phaseolus vulgaris. - Plant Physiol. Bioch. 38: 717–725, 2000.

    Article  CAS  Google Scholar 

  • Han H., Gao S., Li B.F. et al.: Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress. - C J. Plant Physiol. 167: 176–183, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Han S., Chen L.S., Jiang H.X. et al.: Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. - C J. Plant Physiol. 165: 1331–1341, 2008.

    Article  CAS  Google Scholar 

  • Chen X.Y., Li W., Lu Q.T.: The xanthophyll cycle and antioxidative defense system are enhanced in the wheat hybrid subjected to high light stress. - C J. Plant Physiol. 168: 1828–1836, 2011.

    Article  CAS  Google Scholar 

  • Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. - Physiol. Plantarum 86: 180–187, 1992.

    Article  CAS  Google Scholar 

  • Kubínová L.: Stomata and mesophyll characteristics of barley leaf as affected by light: stereological analysis. - C J. Exp. Bot. 42: 995–1001, 1991.

    Article  Google Scholar 

  • Li H.W., Li B., Zheng Q. et al.: Variation in photosynthetic traits and antioxidant enzyme activities in wheat seedlings transferred from low to high light growth condition. - Acta Agr. Sin. 36: 449–456, 2010.

    Article  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence-a practical guide. - CJ. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  Google Scholar 

  • Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. - Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naramoto M., Katahata S.I., Mukai Y. et al.: Photosynthetic acclimation and photoinhibition on exposure to high light in shade-developed leaves of Fagus crenata seedlings. - Flora 201: 120–126, 2006.

    Article  Google Scholar 

  • Osmond C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants. - In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis, from the Molecular Mechanisms to the Field. Pp.1–24. BIOS Sci. Press, Oxford 1994.

    Google Scholar 

  • Paiva é.A.S., dos Santos Isaias R.M., Vale F.H.A. et al.: The influence of light intensity on anatomical structure and pigment contents of Tradescantia pallida (Rose) Hunt. CV. purpurea Boom (Commelinaceae) Leaves. - Braz. Arch. Biol. Technol. 46: 617–624, 2003.

    Article  Google Scholar 

  • Quero J.L., Villar R., Marañón T. et al.: Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. - New Phytol. 170: 819–834, 2006.

    Article  PubMed  Google Scholar 

  • Schiefthaler U., Russell A.W., Bolh¨¤r-Nordenkampf H.R. et al: Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. - Aust. J. Plant Physiol. 26: 485–494, 1999.

    Article  Google Scholar 

  • Skillman J. Garcia B.M., Virgo A. et al.: Growth irradiance effects on photosynthesis and growth in two co-occurring shade-tolerant neotropical perennials of contrasting photosynthetic pathways. - Am. J. Bot. 92: 1811–1899, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Sui X.L., Mao S.L., Wang L. H. et al.: Effects of low light intensity on gas exchange and chlorophyll fluorescence characteristics of capsicum seedlings. - Acta Hortic. Sin. 34: 615–622, 2007.

    CAS  Google Scholar 

  • Valladares F., Chico J.M. Aranda I.: The greater seedlings highlight tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. - Trees 16: 395–403, 2002.

    CAS  Google Scholar 

  • Veres S., Tóth V.R., Láposi R. et al.: Carotenoid composition and photochemical activity of four sandy grassland species. - Photosynthetica 44: 255–261, 2006.

    Article  CAS  Google Scholar 

  • Wherley B., Gardner D., Metzger J.: Tall fescue photomorphogenesis as influenced by changes in the spectral composition and light intensity. - Crop Sci. 45: 562–568, 2005.

    Article  Google Scholar 

  • Zavala J.A., Ravetta D.A.: Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity. - Field Crop. Res. 69: 143–149, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. D. Chen.

Additional information

Acknowledgements

This study was supported by 948 Project of Ministry of Agriculture [2016-X18], Project of "333 project" in Jiangsu Province (BRA2015315), Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province [CX(16)1025, CX(14) 2022, CX ( 14 ) 2023 ], and the Fundamental Research Funds for the Central Universities (KYCYL201501, KYZ201507, KYRC201601).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Chen, S.M., Song, A.P. et al. Photosynthetic responses of Chrysanthemum morifolium to growth irradiance: morphology, anatomy and chloroplast ultrastructure. Photosynthetica 55, 184–192 (2017). https://doi.org/10.1007/s11099-016-0219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0219-5

Additional key words

Navigation