Photosynthetica

, Volume 54, Issue 3, pp 340–350 | Cite as

Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl

Original papers

Abstract

Salt stress causes extensive losses to agricultural crops, including wheat, throughout the world and has been the focus of wide research. Though, information is scarce on the potential of ancient wheat relatives in tackling this major limiting factor. Thus, six hulled tetraploid wheat genotypes (HW) were compared to a free-threshing durum wheat genotype (FTW) under different NaCl concentrations, ranging from 0 to 150 mM, at early growth stages in a sand culture experiment. Salt stress induced significant declines in the leaf chlorophyll (Chl) a, Chl b, total Chl, and carotentoid contents; the extent of the declines was greater in FTW compared to HW. Mean leaf proline (3.6-fold) and Na+ (1.58-fold) concentrations and Na+/K+ (2.48-fold) drastically increased with 150 mM of NaCl; the magnitude of the increases was greater in HW compared to FTW. While the carotenoids concentration decreased with progressive salinity both in HW and FTW, the activities of antioxidant enzymes, i.e., catalase, ascorbate peroxidase, and peroxidase were reduced in FTW, but remained unchanged in HW. The above responses to 150 mM NaCl were associated with a significant decrease in shoot dry mass of FTW and lack of significant changes in that of HW. Findings of the present study could help pave the way for further studies on physiological and molecular mechanisms of salt tolerance in these durum wheat relatives.

Additional key words

primitive wheat root dry mass salinity 

Abbreviations

APX

ascorbate peroxidase

Car

carotenoids

CAT

catalase

Chl

chlorophyll

Chltot

total chlorophyll

C0

control

DTT

α-dithiothreitol

FM

fresh mass

FTW

free-threshing durum wheat genotype

HW

hulled tetraploid wheat group of genotypes

LSD

least significant difference

POX

peroxidase

PVP

polyvinyl pyrrolidone

ROS

reactive oxygen species

RDM

root dry mass

RH

relative humidity

S50

50 mM NaCl

S100

100 mM NaCl

S150

150 mM NaCl

SDM

shoot dry mass

SOD

superoxide dismutase

ST

salinity tolerance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abogadallah G.M.: Antioxidative defense under salt stress.–Plant Signal. Behav. 5: 369–374, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashraf M., Harris P.J.C.: Potential biochemical indicators of salinity tolerance in plants.–Plant Sci. 166: 3–16, 2004.CrossRefGoogle Scholar
  3. Ashraf M., Harris P. J. C.: Photosynthesis under stressful environments: An overview.–Photosynthetica 51: 163–190, 2013.CrossRefGoogle Scholar
  4. Ashraf M., McNeilly T.: Variability in salt tolerance of nine spring wheat cultivars.–J. Agron. Crop Sci. 160: 14–21, 1998.CrossRefGoogle Scholar
  5. Ashraf M., O’Leary J.W.: Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress. 1. Yield components and ion distribution.–J. Agron. Crop Sci. 176: 91–101, 1996.CrossRefGoogle Scholar
  6. Azizpour K., Shakiba M.R., Khos Kholgh Sima N.A. et al.: Physiological responses of spring durum wheat genotypes to salinity.–J. Plant Nutr. 33: 859–873, 2010.CrossRefGoogle Scholar
  7. Bates L.S.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  8. Bhandal I.S., Malik C.P.: Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants.–Int. Rev. Cytol. 110: 205–254, 1988.CrossRefGoogle Scholar
  9. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.–Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  10. Chance B., Maehly A.C.: Assay of catalase and peroxidase.–Methods Enzymol. 2: 764–775, 1955.CrossRefGoogle Scholar
  11. Chen H., An R., Tang J.H. et al.: Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice.–Mol. Breeding 19: 215–225, 2007.CrossRefGoogle Scholar
  12. Debez A., Ben Hamed K., Grignon C. et al.: Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima.–Plant Soil 262: 179–189, 2004.CrossRefGoogle Scholar
  13. Demiral T., Türkan I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance.–Environ. Exp. Bot. 53: 247–257, 2005.CrossRefGoogle Scholar
  14. Dvorák J., Noaman M., Goyal S. et al.: Enhancement of salttolerance of Triticum turgidum L. by the Knal locus transferred from the Triticum aestivum L.–Theor. Appl. Genet. 87: 872–877, 1994.CrossRefPubMedGoogle Scholar
  15. Ehsanzadeh P., Sabagh Nekoonam M., Nouri Azhar J. et al.: Growth, chlorophyll, and cation concentration of tetraploid wheat on a solution high in sodium chloride salt: hulled versus free-threshing genotypes.–J. Plant Nutr. 32: 58–70, 2009.CrossRefGoogle Scholar
  16. Flowers T.J., Gaur P.M., Gowda C.L.L. et al.: Salt sensitivity in chickpea.–Plant Cell Environ. 33: 490–509, 2010.CrossRefPubMedGoogle Scholar
  17. Fougere F., Rudulier D.L., Streeter J.G.: Effects of salt stress on amino acid, and carbohydrate composition of roots, bacteroids and cytosol of alfalfa (Medicago sativa L.).–Plant Physiol. 96: 1228–1236, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Genc Y., McDonald G.K., Tester M.: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat.–Plant Cell Environ. 30: 1486–1498, 2007.CrossRefPubMedGoogle Scholar
  19. Gilbert G.A., Gadush M.V., Wilson C. et al.: Amino acid accumulation in sink and source tissues of Coleus blumei Benth. During salinity stress.–J. Exp. Bot. 49: 107–114, 1998.CrossRefGoogle Scholar
  20. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress resistance in crop plants.–Plant Physiol. Biochem. 48: 909–930, 2010.CrossRefPubMedGoogle Scholar
  21. Gorham J., Hardy C., Wyn Jones R.G. et al.: Chromosomal location of a K/Na discrimination character in the D genome of wheat.–Theor. Appl. Genet. 74: 584–588, 1987.CrossRefPubMedGoogle Scholar
  22. Halliwell B., Gutteridge J.M.C.: Free Radicals in Biology and Medicine. Pp. 851. Oxford University Press, London 1985.Google Scholar
  23. Herzog V., Fahimi H.: Determination of the activity of peroxidase.–Anal. Biochem. 55: 554–562, 1973.CrossRefPubMedGoogle Scholar
  24. Hoagland D.R., Arnon D.I.: The water culture method for growing plants without soil.–Calif. Agric. Exp. Stat. 347: 1–32, 1950.Google Scholar
  25. Huang S., Spielmeyer W., Lagudah E.S. et al.: A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat.–Plant Physiol. 142: 1718–1727, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kiani-Pouya A., Rasouli F.: The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition.–Photosynthetica 52: 288–300, 2014.CrossRefGoogle Scholar
  27. Lichtenthaler H.K., Wellburn, W.R.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.–Biochem. Soc. T. 11: 591–592, 1994.CrossRefGoogle Scholar
  28. Miller D.M.: Errors in the measurement of root pressure and exudation volume flow-rate caused by damage during the transfer of unsupported roots between solutions.–Plant Physiol. 85: 164–166, 1987.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mittler R.: Oxidative stress, antioxidants and stress tolerance.–Trends Plant Sci. 7: 405–410, 2002.CrossRefPubMedGoogle Scholar
  30. Munns R.: Comparative physiology of salt and water stress.–Plant Cell Environ. 25: 239–250, 2002.CrossRefPubMedGoogle Scholar
  31. Munns R., James R.A.: Screening methods for salinity tolerance: a case study with tetraploid wheat.–Plant Soil 253: 201–218, 2003.CrossRefGoogle Scholar
  32. Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  33. Nabti E., Mohamed Sahnoune M., Ghoul M. et al.: Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca.–J. Plant Growth Regul. 29: 6–22, 2010.CrossRefGoogle Scholar
  34. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  35. Nesbitt M., Sammuel D.: From staple crop to extinction? The archaeology and history of the hulled wheats.–In: Padulosi S., Hammer K., Heller J. (ed.): Proceedings of the First International Workshop on Hulled Wheats. Pp. 41–100. International Plant Genetic Resources Institute, Rome 1995.Google Scholar
  36. Nevo E.: Genomic diversity in nature and domestication.–In: Henry R. (ed.): Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants. Pp. 287–316. CAB Publ., CAB International, Wallingford 2004.Google Scholar
  37. Nevo E., Chen G.: Drought and salt tolerances in wild relatives for wheat and barley improvement.–Plant Cell Environ. 33: 670–685, 2010.CrossRefPubMedGoogle Scholar
  38. Noctor G., Gomez L., Vanacker H. et al.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling.–J. Exp. Bot. 53: 1283–1304, 2002.CrossRefPubMedGoogle Scholar
  39. Parvaiz A., Satyawati S.: Salt stress and phyto-biochemical responses of plants–a review.–Plant Soil Environ. 54: 89–99, 2008.Google Scholar
  40. Poustini K., Siosemardeh A.: Ion distribution in wheat cultivars in response to salinity stress.–Field Crop. Res. 85: 125–133, 2004.CrossRefGoogle Scholar
  41. Reddy A.R., Chaitanya K.V., Vivekanandan M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants.–J. Plant Physiol. 161: 1189–1202, 2004.CrossRefGoogle Scholar
  42. Sairam R.K., Rao K.V., Srivastava G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.–Plant Sci. 163: 1037–1046, 2002.CrossRefGoogle Scholar
  43. Schachtman D.P., Munns R., Whitecross M.I.: Variation of sodium exclusion and salt tolerance in Triticum tauschii.–Crop Sci. 31: 992–997, 1991.CrossRefGoogle Scholar
  44. Schmid J.E., Rimle R., Beglinger C.H. et al.: Agronomic and genetic studies with spelt and wheat x spelt crosses.–In: Stolen O., Bruhn K., Pithan K., Hill J. (ed.): Small Grain Cereals and Pseudo-cereals Workshop, Copenhagen. Pp. 9–18. European Commission, Copenhagen 1996.Google Scholar
  45. Singh A.K., Dubey R.S.: Changes in chlorophyll a and b contents and activities of photosystems I and II in rice seedlings induced by NaCl.–Photosynthetica 31: 489–499, 1995.Google Scholar
  46. Sudhir P., Murthy S.D.S: Effect of salt stress on basic processes of photosynthesis.–Photosynthetica 42: 481–486, 2004.CrossRefGoogle Scholar
  47. Tuna A.L., Kaya C., Dikilitas M., Higgs D.: The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants.–Environ. Exp. Bot. 62: 1–9, 2008.CrossRefGoogle Scholar
  48. Tunc-Ozdemir M., Miller G., Song L. et al.: Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis.–Plant Physiol. 151: 421–432, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Widodo Patterson J.H., Newbigin E. et al.: Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance.–J. Exp. Bot. 60: 4089–4103, 2009.CrossRefPubMedGoogle Scholar
  50. Winicov I.: New molecular approaches to improving salt tolerance in crop plants.–Ann. Bot.-London 82: 703–710, 1998.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  1. 1.Department of Agronomy and Plant BreedingCollege of Agriculture, Isfahan University of TechnologyIsfahanIran

Personalised recommendations