Abstract
Photosynthetic parameters including net photosynthetic rate (P N), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (g s) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The P N declined rapidly with the decrease of temperature in all studied plants. St showed the maximum P N of 11.9 μmol m−2 s−1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of P N. St showed minimum E (0.1 mmol m−2 s−1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the g s also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum g s of 0.07 mol m−2 s−1 at 25°C followed by Df and Cc. However, St showed the minimum g s that further decreased up to ∼4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.
This is a preview of subscription content, access via your institution.
Abbreviations
- ANOVA :
-
analysis of variance
- Car:
-
carotenoids
- Cc :
-
Chlorophytum comosum
- Chl:
-
chlorophyll
- Df :
-
Dracaena fragans
- DMF:
-
N,N-dimethyl formamide
- E :
-
transpiration rate
- FM:
-
fresh mass
- g s :
-
stomatal conductance
- LSD:
-
least significant difference
- Pd :
-
Philodendron domesticum
- P N :
-
net photosynthetic rate
- Po :
-
Peperomia obtussifolia
- St :
-
Sansevieria trifasciata
- WUE:
-
water-use efficiency
References
Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. — Photosynthetica 51: 163–190, 2013.
Biswal B., Joshi P.N., Raval M.K. et al.: Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. — Curr. Sci. 101: 47–56, 2011.
Cowan I.R.: Regulation of water use in relation to carbon gain in higher plants. — In: Pirson A., Zimmermann M.H. (ed.): Encyclopedia of Plant Physiology. Pp. 589–613. Springer-Verlag, Berlin 1982.
Doubnerová V., Ryšlavá H.: What can enzymes of C4 photosynthesis do for C3 plants under stress? — Plant Sci. 180: 575–583, 2011.
Ensminger I., Busch F., Huner N.P.A.: Photostasis and cold acclimation: sensing low temperature through photosynthesis. — Physiol. Plantarum 126: 28–44, 2006.
Freschi L., Mercier H.: Connecting environmental stimuli and crassulacean acid metabolism expression: Phytohormones and other signaling molecules. — Prog. Bot. 73: 231–255, 2012.
Gupta S.M., Agarwal A., Kumar K. et al.: Physiochemical response of air purifyingindoor plants under cold stress. — J. Biochem. Internatl. 2: 1–7, 2015.
Habibi F., Normahamadi H., Sharifabad A. et al.: Effect of cold stress on cell membrane stability, chlorophyll a and b contain and proline accumulation in wheat (Triticum aiestivum L.) variety. — African J. Agric. Res. 6: 5854–5859, 2011.
Krivosheeva A., Tao D.L., Ottander C. et al.: Cold acclimation and photoinhibition of photosynthesis in Scots pine. — Planta 200: 296–305, 1996.
Maroni M., Seifert B., Lindvall T. (ed.): Indoor Air Quality — A Comprehensive Reference Book. Pp. 29–87. Elsevier Sci., New York 1995.
Medici L.O., Azevedo R.A., Canellas L.P. et al.: Stomatal conductance of maize under water and nitrogen deficits. — Pesqui. Agropecu. Bras. 42: 599–601, 2007.
Moran R., Porath D.: Chlorophyll determination in intact tissues using N,N dimethylformamide. — Plant Physiol. 65: 478–479, 1980.
Nobel P.S.: High productivities of certain agronomic CAM species. — In: Winter K., Smith J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 255–265. Springer-Verlag, Berlin 1996.
Oliveira G., Peñuelas J.: Effects of winter cold stress on photosynthesis and photochemicalefficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. — Plant Ecol. 175: 179–191, 2004.
Orsenigo M., Patrignani G., Rascio N.: Ecophysiology of C3,C4 and CAM plants. — In: Pessarakli M. (ed.): Handbook of Photosynthesis. Pp. 1–25. Marcel Dekker, New York-Basel, Hong Kong 1997.
Papinchak H.L., Holcomb E.J., Best T.O. et al.: Effectiveness of houseplants in reducing the indoor air pollutant ozone. — HortTechnology19: 286–290, 2009.
Roden J.S., Egerton J.J.G., Ball M.C.: Effect of elevated CO2 on photosynthesis and growth of snow gum Eucalyptuspauciflora seedlings during winter and spring. — Aust. J. Plant Physiol. 26: 37–46, 1999.
Sinclair T.R., Tanner C.B., Bennett J.M.: Water-use efficiency in crop production. — Bioscience 34: 36–40, 1984.
Tewari A.K., Tripathy B.C.: Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumberand wheat. — Plant Physiol. 117: 851–858, 1998.
West J.B.: Oxygen enrichment of room air to relieve the hypoxia of high altitude. — Resp. Physiol. 99: 225–232, 1995.
Wolverton B.C., McDonald R.C., Watkins E.A.: Foliage plants for removing indoor air pollutants from energy-efficient homes. — Econ. Bot. 38: 224–228, 1984.
Wood R.A.: Improving the indoor environment for health, wellbeing and productivity. — In: Greening Cities: A New Urban Ecology. Australian Technology Park. Pp. 13. Sydney 2003.
Xu Z., Zhou G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. — J. Exp. Bot. 59: 3317–3325, 2008.
Yamori W., Hikosaka K., Way D.A.: Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. — Photosynth Res. 119: 101–117, 2014.
Yamori W., Noguchi K., Hikosaka K., Terashima I.: Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. — Plant Physiol. 152: 388–399, 2010.
Author information
Authors and Affiliations
Corresponding author
Additional information
Acknowledgments: Authors thank to the Director DIPAS for providing research guidance under DHRUV project. Financial assistance received by K. Kumar and B. Dev from Defence Research and Development Organization (DRDO), India is also duly acknowledged. First two authors contributed equally.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Gupta, S.M., Agarwal, A., Dev, B. et al. Assessment of photosynthetic potential of indoor plants under cold stress. Photosynthetica 54, 138–142 (2016). https://doi.org/10.1007/s11099-015-0173-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11099-015-0173-7