Skip to main content

Advertisement

Log in

Lanthanum improves salt tolerance of maize seedlings

  • Brief Communication
  • Published:
Photosynthetica

Abstract

In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (P N), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, P N, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APX:

ascorbate peroxidase

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

Fv/Fm :

maximum photochemical efficiency of PSII

GPX:

glutathione peroxidase

JA:

jasmonic acid

MDA:

malondialdehyde

P N :

net photosynthetic rate

ΦPSII :

effective quantum yield of PSII

qN :

nonphotochemical quenching

qP :

photochemical quenching

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Aremu A.O., Masondo N.A., Sunmonu T.O. et al.: A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaClstressed tomato plants. — Planta 240: 877–889, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira-Silva S.L., Voigt E.L., Silva E.N. et al.: Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. — Biol. Plantarum 56: 172–176, 2012.

    Article  CAS  Google Scholar 

  • Giannopolitis C.N., Ries S.K.: Superoxide dismutases occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo B., Xu L.L., Guan Z.J. et al.: Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir. — Biol. Trace Elem. Res. 147: 334–340, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Hanachi S., Van Labeke M.C., Mehouachi T.: Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. — Photosynthetica 52: 57–62, 2014.

    Article  CAS  Google Scholar 

  • He Z.Q., Zou Z.R., He C.X.: [Effect of AMF on GSH-Px activity and cell membrane osmosis of tomato.] — J. Northwest Sci-Tech. Univ. Agri. For. 34: 53–57, 2006. [In Chinese]

    Google Scholar 

  • Hodges D.M., Andrews C.J., Johnson D.A. et al.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. — Physiol. Plantarum 98: 685–692, 1996.

    Article  CAS  Google Scholar 

  • Hong F.S., Wei Z.G., Zhao G.W.: [The relationship between lanthanum and chlorophyll content in Spinacia oleracea L..] — Sci. China Ser. C 31: 392–400, 2001. [In Chinese]

    Google Scholar 

  • Huang G., Wang L., Zhou Q.: Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation. — Biol. Trace Elem. Res. 151: 105–112, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Jiang W.J., Zhang Z.Y., Li Z.J.: [Effects of LaCl3 on absorption of mineral nutrients in internodal cells of Chara.] — J. Chin. Soc. Rare Earths 26: 797, 2008. [In Chinese]

    CAS  Google Scholar 

  • Lichtenthaler H.K., Wellburn A.L.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. — Biochem. Soc. Trans. 11: 591–593, 1983.

    Article  CAS  Google Scholar 

  • Mehta P., Allakhverdiev S.I., Jajoo A.: Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). — Photosynth. Res. 105: 249–255, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Prochazkova D., Sairam R.K., Srivastava G.C. et al.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. — Plant Sci. 161: 765–771, 2001.

    Article  CAS  Google Scholar 

  • Rubio M.C., Bustos-Sanmamed P., Clemente M.R. et al.: Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. — New Phytol. 181: 851–859, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar R.K., Mahata K.R., Singh D.P.: Differential responses of antioxidant system and photosynthetic characteristics in four rice cultivars differing in sensitivity to sodium chloride stress. — Acta Physiol. Plant. 35: 2915–2926, 2013.

    Article  CAS  Google Scholar 

  • Xu C.M., Zhou B., Wang X.D. et al.: Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrate. — Biol. Plantarum 51: 567–570, 2007.

    Article  CAS  Google Scholar 

  • Zhang L.J., Zeng F.L., Xiao R.: Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves. — Biol. Trace Elem. Res. 91: 243–252, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Chen L., He J. et al.: Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress. — Biol. Plantarum 54: 164–168, 2010.

    Article  CAS  Google Scholar 

  • Zheng C.F., Jiang D., Liu F.L. et al.: Effect of salt and waterlogging stresses, chloroplast ATP synthesis, and their combination on leaf photosynthesis, and antioxidant capacity in wheat. — Plant Sci. 176: 575–582, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J., Fang L., Li X. et al.: Jasmonic acid (JA) acts as a signal molecule in LaCl3-induced Baicalin synthesis in Scutellaria baicalensis seedlings. — Biol. Trace Elem. Res. 148: 392–395, 2012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Shan.

Additional information

Acknowledgements: This study was funded by the “Important Scientific Research Project of Henan Institute of Science and Technology (2011010)”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R.Q., Xu, X.J., Wang, S. et al. Lanthanum improves salt tolerance of maize seedlings. Photosynthetica 54, 148–151 (2016). https://doi.org/10.1007/s11099-015-0157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0157-7

Additional key words

Navigation