Skip to main content

Photosynthetic adaptation and survival strategy of Duvalia velutina in an extremely arid environment

Abstract

Leafless Duvalia velutina Lavranos (Apocynaceae) is an arido-active stem succulent common in the arid region southwest of the Arabian Peninsula. This region is characterized by a short wet season with erratic rainfall and a long dry season with high temperature and high irradiance. We investigated the survival strategy of D. velutina by studying nurse association, gas exchange, and chlorophyll fluorescence. Results showed that D. velutina exhibited the strict nurse association with shade for protection against heat and high irradiance. Results also showed that D. velutina is an obligate CAM plant with ample physiotypic plasticity involving a shift to CAM-idling under prolonged drought. Chlorophyll fluorescence measurements revealed water stress-induced reduction of PSII activity occurring in concomitance with a marked rise of nonphotochemical quenching and chlorenchyma anthocyanin content. These results reflected photoprotective capacity involving nonradiative excess energy dissipation and antioxidative attributes. We concluded that the complex survival strategy of D. velutina in its natural arid habitat includes a multifaceted interplay of nurse association, physiotypic plasticity, and photoprotective mechanisms.

This is a preview of subscription content, access via your institution.

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

Fv/Fm :

maximal photochemical efficiency of PSII antenna

g s :

stomatal conductance

NPQ:

nonphotochemical quenching

P N :

photosynthetic rate

ΦPSII :

PSII quantum yield

References

  1. Adams W.W., Demmig-Adams B.: Chlorophyll fluorescence as a tool to monitor plant response to the environment. — In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis Pp. 583–604. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  2. Adams W.W., Zarter C.R., Mueh K.E. et al.: Energy dissipation and photoinhibition: A continuum of photoprotection. — In: Demmig-Adams B., Adams W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 49–64. Springer, Dordrecht 2006.

    Chapter  Google Scholar 

  3. Al-Turki T.A., Masrahi Y.S., Sayed O.H.: Photosynthetic adaptation of Euphorbia fractiflexa (Euphorbiaceae) and survival in arid regions of the Arabian Peninsula. — J. Plant Interact. 9: 107–111, 2014.

    Article  Google Scholar 

  4. Armas C., Pugnaire F.I.: Plant interactions govern population dynamics in a semi-arid plant community. — J. Ecol. 93: 978–989, 2005.

    Article  Google Scholar 

  5. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.

    CAS  Article  PubMed  Google Scholar 

  6. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.

    CAS  Article  PubMed  Google Scholar 

  7. Borland A.M., Zambrano V.A.B., Ceusters J., Shorrock K.: The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. — New Phytol. 191: 619–633, 2011.

    CAS  Article  PubMed  Google Scholar 

  8. Close D.C., Beadle C.L.: The ecophysiology of foliar anthocyanin. — Bot. Rev. 69: 149–161, 2003.

    Article  Google Scholar 

  9. Fisher M., Membery D.A.: Climate. — In: Ghazanfar S.A., Fisher M. (ed.): Vegetation of the Arabian Peninsula. Pp. 5–38. Kluwer Academic Publishers, Amsterdam 1998.

    Chapter  Google Scholar 

  10. Flores J., Jurado E.: Are nurse-protégé interactions more common among plants from arid environments? — J. Veg. Sci. 14: 911–916, 2003.

    Article  Google Scholar 

  11. Gould K.S., McKelvie J., Markham K.R.: Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. — Plant Cell Environ. 25: 1261–1269, 2002.

    CAS  Article  Google Scholar 

  12. Gould K.S.: Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. — J. Biomed. Biotechnol. 5: 314–320, 2004.

    Article  Google Scholar 

  13. Govindjee: Chlorophyll a Fluorescence: A bit of basics and history. — In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll Fluorescence: A Signature of Photosynthesis. Pp. 1–42. Kluwer Academic Publishers, Dordrecht 2004.

    Chapter  Google Scholar 

  14. Horton P., Ruban A.: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. — J. Exp. Bot. 56: 363–373, 2005.

    Google Scholar 

  15. Kalaji H.M., Goltsev V., Bosa K. et al.: Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. — Photosynth. Res. 114: 69–96, 2012.

    CAS  Article  PubMed  Google Scholar 

  16. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. — Photosynth. Res. 122: 121–158, 2014.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Kent M.: Vegetation Description and Data Analysis. Pp. 428. Wiley-Blackwell, Chichester 2012.

    Google Scholar 

  18. Larrea-Alcázar D.M., Murillo J.J., Figueredo C.J., Soriano P.J.: Spatial associations between two globose cacti and two dominant mimosoid bushes in a tropical semiarid enclave. — Ecotropicos 21: 97–105, 2008.

    Google Scholar 

  19. Le Houérou H.N.: Bioclimatology and phytogeography of the Red Sea and Aden Gulf basins. — Arid Land Res. Manag. 17: 177–256, 2003.

    Article  Google Scholar 

  20. Liakopoulos G., Nikolopoulos D., Klouvatou A. et al.: The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). — Ann. Bot.-London 98: 257–265, 2006.

    CAS  Article  Google Scholar 

  21. López R.R., Valdivia S., Sanjinés N., de la Quintana D.: The role of nurse plants in the establishment of shrub seedlings in the semiarid subtropical Andes. — Oecologia 152: 779–790, 2007.

    Article  PubMed  Google Scholar 

  22. Lüttge U.: Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. — AoB Plants 2010: plq005, 2010.

    PubMed Central  Article  PubMed  Google Scholar 

  23. Lüttge U.: Ecophysiology of crassulacean acid metabolism. — Ann. Bot.-London 93: 629–652, 2004.

    Article  Google Scholar 

  24. Mainguet M., Reimer T.O.E.: Aridity: Droughts and Human Development. Pp. 302. Springer, Berlin 1998.

    Google Scholar 

  25. Manetas Y., Drinia A., Petropoulou Y.: High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photoinhibition. — Photosynthetica 40: 349–354, 2002.

    CAS  Article  Google Scholar 

  26. Martínez-Berdeja A., Valverde T.: Growth response of three globose cacti to radiation and soil moisture: An experimental test of the mechanism behind the nurse effect. — J. Arid Environ. 72: 1766–1774, 2008.

    Article  Google Scholar 

  27. Masrahi Y.S., Al-Yemeni M.N., Sayed O.H.: Nurse association of the stem succulent Caralluma acutangula in its natural habitat. — Ekologia 31: 46–53, 2012a.

    Article  Google Scholar 

  28. Masrahi Y.S., Al-Turki T.A., Sayed O.H.: Crassulacean acid metabolism permutation and survival of Caralluma Species (Apocynaceae) in arid habitats. — Ecol. Balkanica 4: 63–71, 2012b.

    Google Scholar 

  29. Masrahi Y.S., Al-Yemeni M.N., Al-Turki T.A., Sayed O.H.: Ecophysiological mechanisms of succulent survival in natural conditions: Photosynthetic carbon Fixation in Caralluma acutangula (Decne. Ne.Br.) (Asclepiadaceae). — Pol. J. Ecol. 59: 437–442, 2011.

    Google Scholar 

  30. Méndez E., Guevara J.C., Estevez O.R.: Distribution of cacti in Larrea spp. Shrublands in Mendoza, Argentina. — J. Arid Environ. 58: 451–462, 2004.

    Article  Google Scholar 

  31. Middleton N.J., Thomas D.S.G. (ed.): UNEP: World Atlas of Desertification. Pp. 304. Edward Arnold, London 1997.

    Google Scholar 

  32. Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis. — Plant Physiol. 155: 86–92, 2011.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Murray J.R., Hackett W.P.: Dihydroflavonol Reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. — Plant Physiol. 97: 343–351, 1991.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. Nagata T., Todoriki S., Masumizu T. et al.: Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. — J. Agr. Food Chem. 51: 2992–2999, 2003.

    CAS  Article  Google Scholar 

  35. Neill S.O., Gould K.S.: Anthocyanins in leaves: light attenuators or antioxidants? — Funct. Plant Biol. 30: 865–873, 2003.

    CAS  Article  Google Scholar 

  36. Niewiadomska E., Borland A.M.: Crassulacean acid metabolism: a cause or consequence of oxidative stress in plants? — Prog. Bot. 69: 247–266, 2008.

    CAS  Article  Google Scholar 

  37. Osmond C.B., Adams W.W., Smith S.T.: Crassulacean acid metabolism. — In: Pearcy R.W., Ehleringer J., Mooney H.A., Rundel P.W. (ed.): Plant Physiological Ecology. Pp. 255–280. Chapman and Hall, London 1991.

    Google Scholar 

  38. Padilla F.M., Pugnaire F.I.: The role of nurse plants in the restoration of degraded environments. — Front. Ecol. Environ. 4: 196–202, 2006.

    Article  Google Scholar 

  39. Pérez-Sánchez R.M., Flores R.J., González-Salvatierra C. et al.: Growth and photosynthesis responses of Chihuahuan desert succulent seedlings. — International Research on Food Security, Natural Resource Management and Rural Development Conference, Stuttgart, Germany, 2013.

  40. Peters E.M., Martorell C., Ezcurra E.: Nurse rocks are more important than nurse plants in determining the distribution and establishment of globose cacti (Mammilaria) in the Tehaucan valley, Mexico. — J. Arid Environ. 72: 593–601, 2008.

    Article  Google Scholar 

  41. Ren H., Yang L., Liu N.: Nurse plant theory and its applications in ecological restoration in lower subtropics of China. — Prog. Nat. Sci. 18: 137–142, 2008.

    Article  Google Scholar 

  42. Reyes-Olivas A., García-Moya E., López-Mata L.: Cacti-shrub interaction in the desert of Northern Sinaloa, Mexico. — J. Arid Environ. 52: 431–445, 2002.

    Article  Google Scholar 

  43. Rojas-Sandoval J., Meléndez-Ackerman E.J.: Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus. — J. Plant Ecol. 6: 489–498, 2013.

    Article  Google Scholar 

  44. Sayed O.H.: Aridity and plant survival in desert environments. — In: Prakash I. (ed.): Ecology of Desert Environments Pp. 87–103. Scientific Publishers, Jodhpur 2001a.

    Google Scholar 

  45. Sayed O.H.: Crassulacean acid metabolism 1975–2000, a check list. Review. — Photosynthetica 39: 339–352, 2001b.

    CAS  Article  Google Scholar 

  46. Sayed O.H.: Chlorophyll fluorescence as a tool in cereal crop research. Review. — Photosynthetica 41: 321–330, 2003.

    CAS  Article  Google Scholar 

  47. Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. — New Phytol. 155: 349–361, 2002.

    CAS  Article  Google Scholar 

  48. Suzán-Azpiri H., Sosa V.J.: Comparative performance of the giant cardon cactus (Pachycereus pringli) seedlings under two leguminous nurse plant species. — J. Arid Environ. 65: 351–362, 2006.

    Article  Google Scholar 

  49. Valiente-Banuet A., Verdú M.: Plant facilitation and phylogenetics. — Annu. Rev. Ecol. Evol. S. 44: 347–366, 2013.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. S. Masrahi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masrahi, Y.S., Al-Turki, T.A. & Sayed, O.H. Photosynthetic adaptation and survival strategy of Duvalia velutina in an extremely arid environment. Photosynthetica 53, 555–561 (2015). https://doi.org/10.1007/s11099-015-0143-0

Download citation

Additional key words

  • chlorophyll fluorescence
  • CAM
  • CAM-idling
  • drought
  • Duvalia velutina
  • nurse association
  • photoprotection