Ultraviolet-B radiation or heat cause changes in photosynthesis, antioxidant enzyme activities and pollen performance in olive tree

Abstract

The present study attempts to determine how some physiological and reproductive functions of olive tree (Olea europaea L., cv. Koroneiki) respond to enhanced UV-B radiation or heat. Enhanced UV-B radiation was applied to (1) three-year-old potted plants in an open nursery (corresponded to ca. 16% ozone depletion), and (2) in vitro cultured pollen samples (220 μmol m−2 s−1, PAR = 400−700 nm + UV-B at 7.5, 15.0, or 22.5 kJ m−2 d−1). Potted olive plants were also subjected to high temperature (38 ± 4°C) for 28 h to mimic heat levels regularly measured in olive growing areas. A significant effect of UV-B on photosynthetic rate was observed. However, enhanced UV-B radiation did affect neither chlorophyll nor carotenoid content, supporting previous reports on hardiness of the photosynthetic apparatus in olive. Increased superoxide dismutase activity was observed in UV-B-treated olive plants (+ 225%), whereas no effect was found in the plants under heat stress. Neither UV-B and nor heat did affect H2O2 accumulation in the plant tissues. However, the same treatments resulted in enhanced lipid peroxidation (+ 18% for UV-B and + 15% for heat), which is likely linked to other reactive oxygen species. The increased guaiacol peroxidase activity observed in both treatments (+ 32% for UV-B and + 49% for heat) is related to the defense against oxidative membrane damage. The observed reduction in pollen germination (20–39%) and tube length (11–44%) could have serious implications on olive yields, especially for low fruit-setting cultivars or in years and environments with additional unfavorable conditions. UV-B and heat effects described here support the hypothesis that plant response to a given stressor is affected by the overall context and that a holistic approach is necessary to determine plant strategies for climate change adaptation.

This is a preview of subscription content, log in to check access.

Abbreviations

ANOVA :

analysis of variance

Car:

carotenoids

Chl:

chlorophyll

C i :

intercellular CO2 concentration

DM:

dry mass

FM:

fresh mass

GPOX:

guaiacol peroxidase

g s :

stomatal conductance

MDA:

malondialdehyde

P N :

net photosynthetic rate

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substances

UV-B:

ultraviolet-B radiation

References

  1. Ali M.B., Hahn E.J., Paek K.Y.: Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. — Plant Physiol. Bioch. 43: 213–223, 2005.

    Article  CAS  Google Scholar 

  2. Almeselmani M., Deshmukh P.S., Chinnusamy V.: Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. — Plant Stress 6: 25–32, 2012.

    Google Scholar 

  3. Aphalo P.J., Albert A., Björn L.O. et al. (ed.): Beyond the Visible: A Handbook of Best Practice in Plant UV Photobiology. Pp 176. University of Helsinki, Division of Plant Biology, Helsinki 2012.

    Google Scholar 

  4. Arora A., Sairam R.K., Srivastava G.C.: Oxidative stress and antioxidative system in plants. — Curr. Sci. 82: 1227–1238, 2002.

    CAS  Google Scholar 

  5. Bacelar E.A., Santos D.L., Moutinho-Pereira J.M. et al.: Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. — Plant Soil 292: 1–12, 2007.

    Article  CAS  Google Scholar 

  6. Caldwell M.M.: Solar UV irradiation and the growth and development of higher plants. — In: Geise A.C. (ed.): Photophysiology. Pp. 131–177. Academic Press, New York 1971.

    Google Scholar 

  7. Choudhary K.K., Agrawal S.B.: Cultivar specificity of tropical mung bean (Vigna radiata L.) to elevated ultraviolet-B: Changes in antioxidative defence system, nitrogen metabolism and accumulation of jasmonic and salicylic acids. — Environ. Exp. Bot. 99: 122–132, 2014.

    Article  CAS  Google Scholar 

  8. Conner J.K., Neumeier R.: The effects of ultraviolet-B radiation and intraspecific competition on growth, pollination success, and lifetime female fitness in Phacelia campanularia and P. purshii (Hydrophyllaceae). — Am. J. Bot. 89: 103–110, 2002.

    Article  PubMed  Google Scholar 

  9. Djanaguiraman M., Prasad P.V., Seppanen M.: Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. — Plant Physiol. Bioch. 48: 999–1007, 2010.

    Article  CAS  Google Scholar 

  10. Doupis G., Chartzoulakis K., Beis A. et al.: Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. — Aust. J. Grape Wine R. 17: 36–42, 2011.

    Article  CAS  Google Scholar 

  11. Doupis G., Bertaki M., Psarras G. et al.: Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes. — Sci. Hortic.-Amsterdam 153: 150–156, 2013.

    Article  CAS  Google Scholar 

  12. Fragkouli P.V.: Hellenic National Meteorological Service: Significant weather and climatic events that occurred in Greece in 2012. Available at: http://www.hnms.gr/hnms/english/climatology/climatology_html. 2013.

  13. Gechev T.S., Hille J.: Hydrogen peroxide as a signal controlling plant programmed cell death. — J. Cell Biol. 168: 17–20, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Giordano C.V., Galatro A., Puntarulo S. et al.: The inhibitory effects of UV-B radiation (280–315 nm) on Gunnera magellanica growth correlate with increased DNA damage but not with oxidative damage to lipids. — Plant Cell Environ. 27: 1415–1423, 2004.

    Article  CAS  Google Scholar 

  15. Grammatikopoulos G., Karabourniotis G., Kyparissis A. et al.: Leaf hairs of olive (Olea europaea) prevent stomatal closure by ultraviolet-B radiation. — Austral. J. Plant Physiol. 21: 293–301, 1994.

    Article  CAS  Google Scholar 

  16. Green A.E.S.: The penetration of ultraviolet radiation to the ground. — Physiol. Plantarum 58: 351–359, 1983.

    Article  Google Scholar 

  17. Greenberg B.M., Wilson M.I., Huang X. et al.: The effects of ultraviolet-B radiation on higher plants. — In: Wang W., Lower W.R., Gorsuch J.W. (ed.): Plants for Environmental Studies. Pp. 1–36. CRC Press LLC, Boca Raton 1997.

    Google Scholar 

  18. Guerfel M., Ouni Y., Boujnah D. et al.: Photosynthesis parameters and activities of enzymes of oxidative stress in two young ‘Chemlali’ and ‘Chetoui’ olive trees under water deficit. — Photosynthetica 47: 340–346, 2009.

    Article  CAS  Google Scholar 

  19. Heisler G.M., Grant R.H., Gao W. et al.: Ultraviolet radiation and its impacts on agriculture and forests. — Agr. Forest Meteorol. 120: 3–7, 2003.

    Article  Google Scholar 

  20. Kakani V.G., Reddy K.R., Zhao D. et al.: Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. — Ann. Bot.-London 91: 817–826, 2003.

    Article  CAS  Google Scholar 

  21. Koti S., Reddy K.R., Reddy V.R. et al.: Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. — J. Exp. Bot. 56: 725–736, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Koti S., Reddy K.R., Kakani V.G. et al.: Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interaction on soybean (Glycine max L.) growth and development. — Environ. Exp. Bot. 60: 1–10, 2007.

    Article  CAS  Google Scholar 

  23. Koubouris G.C., Metzidakis I.T., Vasilakakis M.D.: Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. — Environ. Exp. Bot. 67: 209–214, 2009.

    Article  Google Scholar 

  24. Koubouris G.C., Metzidakis I.T., Vasilakakis M.D.: Influence of cross pollination on the development of parthenocarpic olive (Olea europaea) fruits (shotberries). — Exp. Agr. 46: 67–76, 2010.

    Article  Google Scholar 

  25. Kühn H., Borchert A.: Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. — Free Radical Bio. Med. 33: 154–172, 2002.

    Article  Google Scholar 

  26. Liakoura V., Stavrianakou S., Liakopoulos G. et al.: Effects of UV-B radiation on Olea europaea: comparisons between a greenhouse and a field experiment. — Tree Physiol. 19: 905–908, 1999.

    Article  PubMed  Google Scholar 

  27. Martínez-Lüscher J., Torres N., Hilbert G., et al.: Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. — Phytochemistry 102: 106–114, 2014.

    Article  PubMed  Google Scholar 

  28. Nogues S., Baker N.R.: Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. — J. Exp. Bot. 51: 1309–1317, 2000.

    Article  CAS  PubMed  Google Scholar 

  29. Paoletti E.: UV-B and Mediterranean forest species: Direct effects and ecological consequences. — Environm. Pollut. Ser. 137: 372–379, 2005.

    Article  CAS  Google Scholar 

  30. Paul N.D., Gwynn-Jones D.: Ecological roles of solar UV radiation: towards an integrated approach. — Trends Ecol. Evol. 18: 48–55, 2003.

    Article  Google Scholar 

  31. Petrov V.D., Van Breusegem F.: Hydrogen peroxide — a hub for information flow in plants. — AoB Plants 2012: pls014, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rozema J., Broekman R., Lud D. et al.: Consequences of depletion of stratospheric ozone for terrestrial Antarctic ecosystems: the response of Deschampsia antarctica to enhanced UV-B radiation in a controlled environment. — Plant Ecol. 154: 101–115, 2001.

    Article  Google Scholar 

  33. Ruelland E., Zachowski A.: How plants sense temperature. — Environ. Exp. Bot. 69: 225–232, 2010.

    Article  Google Scholar 

  34. Sebastiani L., Minnocci A., Tognetti R.: Olive (Olea europaea L.) plant reactions to atmospheric pollutants and UV-B radiation: current state of the research. — Adv. Hortic. Sci. 16: 144–154, 2002.

    Google Scholar 

  35. Singh S.K., Surabhi G.K., Gao W. et al.: Assesing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation. — J. Photoch. Photobio. B 93: 71–81, 2008.

    Article  CAS  Google Scholar 

  36. Smith J.L., Burritt D.J., Bannister P.: Shoot dry weight, chlorophyll and UV-B-absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. — Ann. Bot.-London 86: 1057–1063, 2000.

    Article  CAS  Google Scholar 

  37. Sofo A., Dichio B., Xiloyannis C. et al.: Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. — Physiol. Plantarum 121: 58–65, 2004.

    Article  CAS  Google Scholar 

  38. Sofo A., Dichio B., Xiloyannis C. et al.: Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. — Funct. Plant Biol. 32: 45–53, 2005.

    Article  CAS  Google Scholar 

  39. Sofo A., Dichio B., Montanaro G. et al.: Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering. — Agr. Water Manage. 96: 1201–1206, 2009.

    Article  Google Scholar 

  40. Tulkens P., Ferner E., Myhrvold-Hanssen T.L.: European Community: European research framework programme — Research on climate change. Pp. 1–356, European Commission. Available at: http://ec.europa.eu/research/environment/pdf/cop-15.pdf. 2009.

  41. World Meteorological Organization (WMO): Report of the Eighth Meeting of the Ozone Research Managers of the Parties to the Vienna Convention for the Protection of the Ozone Layer (Geneva, Switzerland, 2–4 May 2011). — WMO Global Ozone Research and Monitoring Project Report No. 53. Pp. 524–526. Available at: http://www.wmo.int/pages/prog/arep/gaw/documents/8th_ORM_No_53.pdf. 2011.

  42. Xiong F.S., Day T.A.: Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. — Plant Physiol. 125: 738–751, 2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Xu C., Natarajan S., Sullivan J.H.: Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. — Environ. Exp. Bot. 63: 39–48, 2008.

    Article  CAS  Google Scholar 

  44. Yang Q., Li Y., Wang L. et al.: Effect of lanthanum(III) on the production of ethylene and reactive oxygen species in soybean seedlings exposed to the enhanced ultraviolet-B radiation. — Ecotox. Environ. Safe. 104: 152–159, 2014.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Sofo.

Additional information

Acknowledgements: The authors would like to thank Dr G. Doupis for his expert assistance in UV-B trials.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koubouris, G.C., Kavroulakis, N., Metzidakis, I.T. et al. Ultraviolet-B radiation or heat cause changes in photosynthesis, antioxidant enzyme activities and pollen performance in olive tree. Photosynthetica 53, 279–287 (2015). https://doi.org/10.1007/s11099-015-0102-9

Download citation

Aditional key words

  • abiotic stress
  • climate change
  • lipid peroxidation
  • ozone
  • pollen germination