Skip to main content

Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test


The changes in growth and photosynthetic performance of two wheat (Triticum aestivum L.) cultivars (Bolal-2973 and Atay-85) differing in their sensitivity to boron (B) toxicity were investigated under toxic B conditions. Eight-day old seedlings were exposed to highly toxic B concentrations (5, 7.5, and 10 mM H3BO3) for 5 and 9 days. Fast chlorophyll a fluorescence kinetics was determined and analysed using JIP test. Growth parameters, tissue B contents, and membrane damage were measured at two stress durations. The photochemical performance of PSII was hindered more in the sensitive cultivar (Atay-85) than that of the tolerant one (Bolal-2973) under B toxicity. The increase in the B concentration and stress duration caused membrane leakage in both cultivars. However, higher membrane damage was observed in Atay-85 compared to Bolal-2973. Additionally, significant reduction of growth parameters was observed in both cultivars at toxic B concentrations. The accumulation of B was higher in shoots than in roots of both cultivars. Nevertheless, Atay-85 translocated more B from roots to leaves compared to Bolal-2973. The advantages of certain JIP test parameters were demonstrated for evaluation of PSII activity in plants exposed to B stress. Evaluation of photosynthetic performance by JIP test as well as assessment of growth and tissue B content might be used to determine the effects of B toxicity in wheat. The results indicated lesser sensitivity to B toxicity in Bolal-2973 compared to Atay-85.

This is a preview of subscription content, access via your institution.





cross section


electron transfer/transport

F0 :

initial fluorescence intensity

FM :

maximal fluorescence intensity


inductively coupled plasma-atomic emission spectroscopy


fluorescence transient with O-J-I-P phases


performance index

QA :

primary quinone acceptor of photosystem II

QB :

secondary quinone acceptor of photosystem II


reaction centre


trapping flux

φE0 or ET0/ABS:

quantum yield of electron transport

φP0 or TR0/ABS:

maximum quantum yield of primary photochemistry


  • Alpaslan, M., Gunes, A.: Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. — Plant Soil 236: 123–128, 2001.

    CAS  Article  Google Scholar 

  • Ardic, M., Sekmen, A.H., Tokur, S. et al.: Antioxidant responses of chickpea plants subjected to boron toxicity. — Plant Biol. 11: 328–338, 2009.

    CAS  PubMed  Article  Google Scholar 

  • Bussotti, F., Strasser, R.J., Schaub, M.: Photosynthetic behavior of woody species under high ozone exposure probed with the JIP test: a review. — Environ. Pollut. 147: 430–437, 2007.

    CAS  PubMed  Article  Google Scholar 

  • Campbell, T.A., Rathjen, A.J., Paull, J.G., Islam, A.K.M.R.: Method for screening bread wheat for tolerance to boron. — Euphytica 100: 131–135, 1998.

    CAS  Article  Google Scholar 

  • Ceppi, M.G., Oukarroum, A., Çiçek, N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. — Physiol. Plantarum 144: 277–288, 2012.

    CAS  Article  Google Scholar 

  • Cervilla, L.M., Rosales, M.A., Rubio-Wilhelmi, M.M. et al.: Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. — Plant Sci. 176: 545–552, 2009.

    CAS  Article  Google Scholar 

  • Chantachume, Y., Smith, D., Hollamby, G.J. et al.: Screening for boron tolerance in wheat (T. aestivum) by solution culture in filter paper. — Plant Soil 177: 249–254, 1995.

    CAS  Article  Google Scholar 

  • Choi, E.Y., Kolesik, P., McNeill, A. et al.: The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.). — Plant Cell Environ. 30: 984–993, 2007.

    CAS  PubMed  Article  Google Scholar 

  • Čajánek, M., Štroch, M., Lachetová, I. et al.: Characterization of the photosystem II inactivation of heat-stressed barley leaves as monitored by the various parameters of chlorophyll a fluorescence and delayed fluorescence. — J. Photoch. Photobio. B 47: 39–45, 1998.

    Article  Google Scholar 

  • Eullaffroy, P., Frankart, C., Aziz, A. et al.: Energy fluxes and driving forces for phytosynthesis in Lemna minor exposed to herbicides. — Aquat. Bot. 90: 172–178, 2009.

    CAS  Article  Google Scholar 

  • Guidi, L., Degl’Innocenti, E., Carmassi, G. et al.: Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. — Environ. Exp. Bot. 73: 57–63, 2011.

    CAS  Article  Google Scholar 

  • Gunes, A., Soylemezoglu, G., Inal, A. et al.: Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. — Sci. Hortic.-Amsterdam 110: 279–284, 2006.

    CAS  Article  Google Scholar 

  • Gupta, U.C.: Boron deficiency and toxicity symptoms for several crops as related to tissue boron levels. — J. Plant Nutr. 6: 387–395, 1983.

    CAS  Article  Google Scholar 

  • Han, S., Tang, N., Jiang, H.X. et al.: CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. — Plant Sci. 176: 143–153, 2009.

    CAS  Article  Google Scholar 

  • Hayes, J.E., Reid, R.J.: Boron tolerance in barley is mediated by efflux of boron from the roots. — Plant Physiol. 136: 3376–3382, 2004.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. — Circ. Calif. Agr. Exp. Sta. 347: 1–39, 1950.

    Google Scholar 

  • Jefferies, S.P., Barr, A.R., Karakousis, A. et al.: Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). — Theor. Appl. Genet. 98: 1293–1303, 1999.

    CAS  Article  Google Scholar 

  • Kalayci, M., Alkan, A., Cakmak, I. et al.: Studies on differential response of wheat cultivars to boron toxicity. — Euphytica 100: 123–129, 1998.

    CAS  Article  Google Scholar 

  • Karabal, E., Yücel, M., Öktem, H.A.: Antioxidants responses of tolerant and sensitive barley cultivars to boron toxicity. — Plant Sci. 164: 925–933, 2003.

    CAS  Article  Google Scholar 

  • Kobayashi, M., Matoh, T., Azuma, J.: Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. — Plant Physiol. 110: 1017–1020, 1996.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis-the basics. — Annu. Rev. Plant Phys. 42: 313–349, 1991.

    CAS  Article  Google Scholar 

  • Landi, M., Pardossi, A., Remorini, D., Guidi, L.: Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. — Environ. Exp. Bot. 85: 64–75, 2013a.

    CAS  Article  Google Scholar 

  • Landi, M., Remorini, D., Pardossi, A., Guidi, L.: Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. — J. Plant Res. 126: 775–786, 2013b.

    CAS  PubMed  Article  Google Scholar 

  • Lazár, D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. — Funct. Plant Biol. 33: 9–30, 2006.

    Article  Google Scholar 

  • Lazár, D.: Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal of photosynthesis. — Photosynthetica 47: 483–498, 2009.

    Article  Google Scholar 

  • Mahboobi, H., Yücel, M., Öktem, H.A.: Cell wall uronic acid concentrations of resistant and sensitive cultivars of wheat and barley under boron0toxicity. — J. Plant Nutr. 24: 1965–1975, 2001.

    CAS  Article  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    CAS  PubMed  Article  Google Scholar 

  • Miwa, K., Fujiwara, T.: Boron transport in plants: co-ordinated regulation of transporters. — Ann. Bot.-London 105: 1103–1108, 2010.

    CAS  Article  Google Scholar 

  • Nable, R.O., Bañuelos, G.S., Paull, J.G.: Boron toxicity. — Plant Soil 193: 181–198, 1997.

    CAS  Article  Google Scholar 

  • Nable, R.O.: Resistance to boron toxicity amongst several barley and wheat cultivars: A preliminary examination of the resistance mechanism. — Plant Soil 112: 45–52, 1988.

    CAS  Article  Google Scholar 

  • O’Neill, M.A., Ishii, T., Albersheim, P., Darvill, A.G.: Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. — Ann. Rev. Plant Biol. 55: 109–139, 2004.

    Article  Google Scholar 

  • Oukarroum, A., Madidi, S.E., Schansker, G., Strasser, R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. — Environ. Exp. Bot. 60: 438–446, 2007.

    CAS  Article  Google Scholar 

  • Oxborough, K.: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. — J. Exp. Bot. 55: 1195–1205, 2004.

    CAS  PubMed  Article  Google Scholar 

  • Papadakis, I.E., Dimassi, K.N., Bosabalidis, A.M. et al.: Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks. — Environ. Exp. Bot. 51: 247–257, 2004.

    CAS  Article  Google Scholar 

  • Paull, J.G., Cartwright, B., Rathjen, A.J.: Responses of wheat and barley genotypes to toxic concentrations of soil boron. — Euphytica 39: 137–144, 1988.

    CAS  Article  Google Scholar 

  • Redmann, R.E., Haraldson, J., Gusta, L.V.: Leakage of UVabsorbing substances as a measure of salt injury in leaf tissue of woody species. — Physiol. Plantarum 67: 87–91, 1986.

    CAS  Article  Google Scholar 

  • Reid, R.: Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. — Plant Cell Physiol. 48: 1673–1678, 2007.

    CAS  PubMed  Article  Google Scholar 

  • Reid, R.J., Hayes, J.E., Post, A. et al.: A critical analysis of the causes of boron toxicity in plants. — Plant Cell Environ. 25: 1405–1414, 2004.

    Article  Google Scholar 

  • Schansker, G., Tóth, S.Z., Strasser, R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. — BBABioenergetics 1706: 250–261, 2005.

  • Schnurbusch, T., Hayes, J., Hrmova, M. et al.: Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. — Plant Physiol. 153: 1706–1715, 2010.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Shorrocks, V.M.: The occurrence and correction of boron deficiency. — Plant Soil 193: 121–148, 1997.

    CAS  Article  Google Scholar 

  • Sotiropoulos, T.E., Therios, I.N., Dimassi, K.N. et al.: Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. — J. Plant Nutr. 25: 1249–1261, 2002.

    CAS  Article  Google Scholar 

  • Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterise and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.

    Google Scholar 

  • Strasser, B.J., Strasser, R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. — In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere, Vol. V. Pp. 977–980. Kluwer Academic Publisher, Dordrecht 1995.

    Google Scholar 

  • Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: a Signature of Photosynthesis, Advances in Photosynthesis and Respiration Series. Pp. 321–362. Springer, Rotterdam 2004.

    Chapter  Google Scholar 

  • Strauss, A.J., Kruger, G.H.J., Strasser, R.J., Van Heerden, P.D.R.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. — Environ. Exp. Bot. 56: 147–157, 2006.

    CAS  Article  Google Scholar 

  • Sutton, T., Baumann, U., Hayes, J. et al.: Boron-toxicity tolerance in barley arising from efflux transporter amplification. — Science 318: 1446–1449, 2007.

    CAS  PubMed  Article  Google Scholar 

  • Takano, J., Miwa, K., Yuan, L.X. et al.: Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. — P. Natl. Acad. Sci. USA 102: 12276–12281, 2005.

    CAS  Article  Google Scholar 

  • Thach, L.B., Shapcott, A., Schmidt, S., Critchley, E.: The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. — Photosynth. Res. 94: 423–436, 2007.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. Eyidoğan.

Additional information

Acknowledgements: This work was supported by the National Boron Research Institute, Turkey (Project BOREN-2009-Ç0217).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Öz, M.T., Turan, Ö., Kayihan, C. et al. Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test. Photosynthetica 52, 555–563 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Additional key words

  • chlorophyll fluorescence
  • fluorescence transient
  • performance index
  • photosynthesis