Skip to main content
Log in

Leaf gas exchange in species of the Theobroma genus

  • Original Paper
  • Published:
Photosynthetica

Abstract

Species of the Theobroma genus are primarily known by their commercially valuable seeds, especially, T. cacao is one of the most important tropical perennial crops. Beside T. grandiflorum, T. bicolor, and T. angustifolium, T. cacao is the only species of the genus that has been better studied to obtain physiologically relevant information. The main objective of this work was to evaluate the leaf gas exchange in seedlings of seven species of the Theobroma genus, seeking to identify characteristics that could be used in T. cacao breeding programmes. The study was realized under greenhouse conditions using six-month-old seedlings, in which net photosynthetic rate (P N), stomatal conductance (g s), transpiration (E), as well as parameters derived from light curves (P N vs. photosynthetically active radiation) were evaluated. T. cacao, along with T. microcarpum, showed the lowest values of P N, g s, and E, while the highest values were presented by T. speciosum, which showed higher saturation irradiance and lower intrinsic and instantaneous water-use efficiencies, being considered the species less conservative in water use. Therefore, the parameters shown by the different evaluated species could serve to design T. cacao genotypes, through introgression of genes for specific environments such as the cabruca system widespread in southern Bahia, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

E :

transpiration

g s :

stomatal conductance to water vapor

g s/VPD:

stomatal conductance to water vapor normalized for leaf-to-air vapor pressure deficit

I c :

compensation irradiance

I s :

saturation irradiance

PAR:

photosynthetically active radiation

P Gmax :

maximum rate of gross photosynthetic rate at saturation irradiance

P N :

net photosynthetic rate per leaf area unit

R D :

dark respiration rate

VPD:

leaf-to-air vapor pressure deficit

WUE (=P N/E ):

instantaneous water-use efficiency

WUEi (= P N/gs):

intrinsic water-use efficiency

References

  • Adams, W.W. III, Demmig-Adams, B., Logan, B.A., et al.: Rapid changes in xantophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. — Plant Cell Environ. 22: 125–136, 1999.

    Article  CAS  Google Scholar 

  • Addison, G.O., Tavares, R.M.: [Observations on the Theobroma genus species which occur in the Amazon.] — Boletim Técnico do Instituto Agronômico do Norte. Vol. 25. 1951. [In Portuguese]

  • Almeida, A.-A.F., Valle, R.R.: Ecophysiology of the cacao tree. — Braz. J. Plant Physiol. 19: 425–448, 2007.

    Article  Google Scholar 

  • Almeida, A.-A.F., Valle, R.R.: Cacao: ecophysiology of growth and production. — In: DaMatta, F.M. (ed.): Ecophysiology of Tropical Tree Crops. Pp. 37–70. Nova Science Publishers Inc., Hauppauge 2009.

    Google Scholar 

  • Baker, R.E.D., Cope, F.W., Holliday, P.C., et al.: The Anglo-Colombian cacao collecting expedition. — Report on Cacao Research: I.C.T.A., Trinidad 1953. 8–18, 1954.

  • Baligar, V.C., Bunce, J.A., Machado, R.C.R., Elson, M.K.: Photosynthetic photon flux density, carbon dioxide concentration and vapor pressure deficit effects on photosynthesis in cacao seedlings. — Photosynthetica 46: 216–221, 2008.

    Article  CAS  Google Scholar 

  • Bazzaz, F.A.: Plants in changing Environments: Linking physiological, population, and community Ecology. Cambridge University Press, Cambridge — New York — Melbourne — Madrid — Cape Town — Singapore — SãoPaolo — Delhi 1998.

    Google Scholar 

  • Bobich, E., Barron-Gafford, G., Rascher, K., Murthy, R.: Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. — Tree Physiol. 30: 866–875, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Calzavara, B.B.G., Muller, C.H., Kahwage, O.N.C.: [Tropical Fruit Crops: Cupuaçuzeiro. Cultivation, Processing and Use of Fruit. ] — EMBRAPA/CPATU, Belém 1984. [In Portuguese]

    Google Scholar 

  • Cao, K.F.: Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. — Can. J. Bot. 78: 1245–1253, 2000.

    Google Scholar 

  • Charters, Y.M., Wilkinson, M.J.: The use of self-pollinated progenies as ‘in-groups’ for the genetic characterization of cocoa germplasm. — Theor. Appl. Genet. 100: 160–166, 2000.

    Article  Google Scholar 

  • Chazdon, R.L, Pearcy, R.W., Lee, D.W., Fetcher, N.: Photosynthetic responses of tropical forest plants to contrasting light environments. — In: Mulkey, S.S., Chazdon, R.L., Smith, A.P. (ed.): Tropical Forest Plant Ecophysiology. Pp. 5–55. Chapman & Hall, New York 1996.

    Chapter  Google Scholar 

  • Costa, L.C.D., de Almeida A.-A.F., Valle, R.R.: Gas exchange, nitrate assimilation and dry-matter accumulation of Theobroma cacao seedlings submitted to different irradiances and nitrogen levels. — J. Hort. Sci. Biotechnol. 76: 224–230, 2001.

    CAS  Google Scholar 

  • Cuatrecasas, J.: Cacao and its allies; a taxonomic revision of the genus Theobroma. — Contr. U.S. Natl. Herb. 35: 379–614, 1964.

    Google Scholar 

  • Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A.: 1989. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. — Plant Physiol. 90: 1233–1238, 1989.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daymond, A.J., Tricker, P. J., Hadley, P.: Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. — Biol. Plant. 55: 99–104, 2011.

    Article  CAS  Google Scholar 

  • Ducke, A.: [The Brazilian species of the Theobroma genus.] — Boletim do Instituto Agronômico do Norte 28: 1–89, 1953. [In Portuguese]

    Google Scholar 

  • Escalona, J.M., Flexas, J., Medrano, H.: Stomatal and nonstomatal limitations of photosynthesis under water stress in field-grown grapevines. — Aust. J. Plant Physiol. 26: 421–433, 1999.

    Article  Google Scholar 

  • Faleiro, F.G., Yamada, M.M., Lopes, U.V. et al.: Genetic similarity of Theobroma cacao L. accessions maintained in duplicates in the Cacao Research Center germplasm collection, based on RAPD markers. — Crop Breed. Appl. Biot. 2: 439–444, 2002.

    Article  Google Scholar 

  • Faleiro, F.G., Pires, J.L., Lopes, U.V.: [Use of RAPD molecular markers and microsatellite in order to confirm the cross-fertilization between Theobroma cacao and Theobroma grandiflorum.] — Agrotrópica 15: 41–46, 2003. [In Portuguese]

    Google Scholar 

  • Farquhar, G.D.: Feedforward responses of stomata to humidity. — Aust. J. Plant Physiol. 5: 787–800, 1978.

    Article  Google Scholar 

  • Feng, Y.L., Cao, K.F., Zhang, J.L.: Photosynthetic characteristics, dark respiration, and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances. — Photosynthetica 42: 431–437, 2004.

    Article  CAS  Google Scholar 

  • Franck, N., Vaast, P.: Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. — Trees 23: 761–769, 2009.

    Article  CAS  Google Scholar 

  • Gao, Q., Zhao, P., Zeng, X., Cai, X. and Shen, W.: A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. — Plant Cell Environ. 25: 1373–1381, 2002.

    Article  Google Scholar 

  • Givnish, T.J.: Adaptations to sun and shade: a whole plant perspective. — Aust. J. Plant Physiol. 15: 63–92, 1988.

    Article  Google Scholar 

  • Gonçalves, J.F.C., Barretto, D.C.S., Santos Junior, U.M., Fernandes, A.V., Sampaio, P.T.B., Buckeridge, M.S.: Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Duke) under different light intensities. — Braz. J. Plant Physiol. 17: 325–334, 2005.

    Google Scholar 

  • Guo, X.R., Cao, K.F., Xu, Z.F.: Acclimation to irradiance in seedlings of three tropical rain forest Garcinia species after simulated gap formation. — Photosynthetica 44: 193–201, 2006.

    Article  Google Scholar 

  • Iqbal, R.M., Rao, A.R., Rasul, E., Wahid, A.: Mathematical models and response functions in photosynthesis: an exponential model. — In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 803–810. Marcel Dekker Inc., New York 1997.

    Google Scholar 

  • Karatassiou, M., Noitsakis, B.: Changes of the photosynthetic behaviour in annual C3 species at late successional stage under environmental drought conditions. — Photosynthetica 48: 377–382, 2010.

    Article  CAS  Google Scholar 

  • Klich, M.G.: Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. — Environ. Exp. Bot. 44: 171–183, 2000.

    Article  PubMed  Google Scholar 

  • Lachenaud, P., Bonnot, F.; Oliver, G.: Use of floral descriptors to study variability in wild cocoa trees (Theobroma cacao L.) in French Guiana. — Genet. Resour. Crop Ev. 46: 491–500, 1999.

    Article  Google Scholar 

  • Lambers, H.; Chappin, F.S., III; Pons, T.L.: Plant Physiological Ecology. 2nd Ed. — Springer, New York 2008.

    Book  Google Scholar 

  • Lerceteau, E., Robert, T., Pétiard, V., Crouzillat, D.: Evaluation of the extent of genetic variability among Theobroma cacao accessions using RAPD and RFLP markers. — Theor. Appl. Genet. 95: 10–19, 1997.

    Article  CAS  Google Scholar 

  • Martinson, V.A.: Hybridization of cacao and Theobroma grandiflorum. — J. Heredity 57: 134–136, 1966.

    Google Scholar 

  • Massonnet, C., Costes, E., Rambal, S., et al.: Stomatal regulation of photosynthesis in apple leaves: Evidence for different water-use strategies between two cultivars. — Ann. Bot. 100: 1347–1356, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mielke, M.S., de Almeida, A.-A.F., Gomes, F. P.: Photosynthetic traits of five neotropical rainforest tree species: interactions between light response curves and leaf-to-air vapour pressure deficit. — Braz. Arch. Biol. Technol. 48: 815–824, 2005.

    Article  Google Scholar 

  • Pearcy, R.W. Acclimation to sun and shade. — In: Raghavendra, A.S. (ed.) Photosynthesis: A Comprehensive Treatise. Pp. 250–263. Cambridge Univ. Press, New York 2000.

    Google Scholar 

  • Reksodihardjo, W.S.: The species of the genus Theobroma. — PhD Thesis. Harvard University, Cambridge 1964.

    Google Scholar 

  • Ribeiro, R., Machado, E., Santos, M. and Oliveira, R.: Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. — Photosynthetica 47: 215–222, 2009.

    Article  Google Scholar 

  • Santos, R.C.: [Growth, morphology and conservation of Brazilian species of the genus Theobroma.] — PhD Thesis. Universidade Estadual de Santa Cruz, Ilhéus 2011. [In Portuguese].

    Google Scholar 

  • Santos, R.C., Pires, J.L, Correa, R.X.: Morphological characterization of leaf, flower, fruit and seed traits among Brazilian Theobroma L. species. — Genet. Resour. Crop Evol. 59: 327–345, 2009.

    Article  Google Scholar 

  • Schiefthaler, U., Russel, A.W., Bolhàr-Nordenkampf, H.R., Critchley, C.: Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. — Aust. J. Plant Physiol. 26: 485–494, 1999.

    Article  Google Scholar 

  • Sims, D.A., Pearcy, R.W.: Photosynthesis and respiration in Alocasia macrorrhiza following transfers to high and low light. — Oecologia 86: 447–453, 1991.

    Article  Google Scholar 

  • Straus-Debenedetti, S., Bazzaz, F.A.: Photosynthetic characteristics of tropical trees along successional gradients. — In: S.S. Mulkey S.S., Chazdon R.L., Smith A.P (ed.): Tropical Forest Plant Ecophysiology. Pp.162–186. Chapman Hall, New York 1996.

    Chapter  Google Scholar 

  • Souza, J.O., Jr.: [Substrates and fertlization for cacao clonal seedlings.] — PhD Thesis, Universidade de São Paulo, São Paulo 2007. [In Portuguese].

    Google Scholar 

  • Vats, S. K., Pandey, S., Nagar, P.K.: Photosynthetic response to irradiance in Valeriana jatamansi Jones, a threatened understorey medicinal herb of Western Himalaya. — Photosynthetica 40: 625–628, 2002.

    Article  CAS  Google Scholar 

  • Venturieri, G.A., Aguiar, J.P.L.: [Chocolate composition of cupuassu almonds (Theobroma grandiflorum Willd. ex Spreng. Schum.)]. — Acta Amazônica 18: 3–8. 1988. [In Portuguese].

    Google Scholar 

  • Zhang, S.; Ma, K.; Chen, L.: Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. — Environ. Exp. Bot. 49: 121–133, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. -A. F. Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, A.A.F., Gomes, F.P., Araujo, R.P. et al. Leaf gas exchange in species of the Theobroma genus. Photosynthetica 52, 16–21 (2014). https://doi.org/10.1007/s11099-013-0048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0048-8

Additional key words

Navigation