Skip to main content
Log in

Sequence of physiological responses in groundnut (Arachis hypogaea L.) subjected to soil moisture deficit

  • Published:
Photosynthetica

Abstract

Responses of drought-tolerant (DT) and drought-susceptible (DS) pot-grown groundnut (Arachis hypogaea L.) varieties to changes in leaf relative water content (RWC) were studied. Water stress (WS) was imposed on 30-day-old plants for 2 weeks. Leaf RWC decreased significantly under WS conditions with simultaneous decrease in net photosynthetic rate (P N) and stomatal conductance (g s). Even though no significant difference was observed between DT and DS varieties with regard to RWC, DT varieties were able to maintain significantly higher P N than DS varieties. Higher values of water use efficiency (WUE) were also observed in DT varieties during WS conditions. The decline in P N due to WS could be attributed to both reduction in g s (i.e. stomatal limitation) and to reduction in chlorophyll content (Chl). No significant difference in leaf area index (LAI) was found between DT and DS types and LAI was not reduced by WS. Significant differences were found among the studied groundnut varieties, but not between DT and DS types, in terms of root, aboveground, and total dry mass. These growth parameters significantly decreased under WS conditions. Based on the results, a sequence of physiological responses in groundnut crop subjected to WS was postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADM:

aboveground dry mass

C:

control, irrigated plants

Chl:

chlorophyll

DS:

drought-susceptible

DT:

drought-tolerant

E :

transpiration rate

g s :

stomatal conductance to water vapour

LAI:

leaf area index

P N :

net photosynthetic rate

RDM:

root dry mass

RLA:

relative leaf area

RWC:

leaf relative water content

SLM:

specific leaf mass

TDM:

total dry mass

WS:

water stress

WUE:

water-use efficiency

References

  • Bennet, J.M., Sinclair, T.R., Ma, L., Boote, K.J.: Single leaf carbon exchange and canopy radiation use efficiency of four peanut cvs. — Peanut Sci. 20: 1–5, 1993.

    Article  Google Scholar 

  • Blum, A.: Plant Breeding for Stress Environments. — CRC Press, Boca Raton 1988.

    Google Scholar 

  • Blum, A., Sinmena, B., Mayer J., et al.: Stem reserve mobilization supports wheat-grain filling under heat stress. — Aust. J. Plant Physiol. 21: 771–781, 1994.

    Article  Google Scholar 

  • Boote, K.J.: Peanut. — In: Teare, I.D., Peet, M.M. (ed.): Crop-Water Relations. Pp. 255–286. John Wiley & Sons, New York 1983.

    Google Scholar 

  • Chaves, M.M.: Effects of water deficits on C assimilation. — J. Exp. Bot. 42: 1–16, 1991.

    Article  CAS  Google Scholar 

  • Chaves, M.M., Flexas, J., Pinheiro, C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. — Ann. Bot. 103: 551–560, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chaves, M.M., Pereira, J.S., Maroco, J.P. et al.: How plants cope with water stress in the field: photosynthesis and growth. — Ann. Bot. 89: 907–916, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Clavel, D., Drame, N.K., Roy-Macauley, H. et al.: Analysis of early responses to drought associated with field drought adaptation in four Sahelian groundnut (Arachis hypogaea L.) cultivars. — Environ. Exp. Bot. 54: 219–230, 2005.

    Article  CAS  Google Scholar 

  • Clavel, D., Diouf, O., Khalfaoui, J.L., Braconnier, S.: Genotypes variations in fluorescence parameters among closely related groundnut (Arachis hypogaea L.) lines and their potential for drought screening programs. — Field Crops Res. 96: 296–306, 2006.

    Article  Google Scholar 

  • Clifford, S.C., Stronach, I.M., Black, C.R. et al.: Effects of elevated CO2, drought and temperature on the water relations and gas exchange of groundnut (Arachis hypogaea) stands grown in controlled environment glasshouses. — Physiol. Plant. 110: 78–88, 2000.

    Article  CAS  Google Scholar 

  • Dubey, R.S.: Photosynthesis in plants under stressful conditions. — In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 859–875. Marcel Dekker, New York 1997.

    Google Scholar 

  • Flexas, J., Escalona, J.M., Medrano, H.: Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. — Plant Cell Environ. 22: 38–48, 1999.

    Article  Google Scholar 

  • França, M.G.C., Thi, A.T.P., Pimentel, C. et al.: Differences in growth and water relation among Phaseolus vulgaris cultivars in response to induced drought stress. — Environ. Exp. Bot. 43: 227–337, 2000.

    Article  Google Scholar 

  • Halder, K.P., Burrage, S.W.: Drought stress effects on water relations of rice grown in nutrient film technique. — Pakistan J. Biol. Sci. 6: 441–444, 2003.

    Article  Google Scholar 

  • Handique, A.C.: Some salient features in the study of drought resistance in tea. — Two Bud 39: 16–18, 1992.

    Google Scholar 

  • Hetherington, A.M., Woodward, F.I.: The role of stomata in sensing and driving environmental change. — Nature 424: 901–908, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Jain, A.K., Basha, S.M., Holbrook, C.C.: Identification of drought-responsive transcripts in peanut (Arachis hypogaea L.). — Electron. J. Biotechnol. 4: 59–67, 2001.

    Article  Google Scholar 

  • Jeyaramraja, P.R., Thushara, S.S.: Biometric parameters in certain peanut (Arachis hypogaea L.) varieties varying in drought tolerance. — Asian Austr. J. Plant Sci. Biotech. 5: 22–26, 2011.

    Google Scholar 

  • Jia, Y., Gray V.M.: Interrelationships between nitrogen supply and photosynthetic parameters in Vicia faba L. — Photosynthetica 41: 605–610, 2004.

    Article  Google Scholar 

  • Jun, H., Imai, K.: Cultivar differences of photosynthesis and respiration in peanut leaves. — Bull. Fac. Agr., Meiji Univ. 119: 21–25, 1999.

    CAS  Google Scholar 

  • Kanechi, M., Kunitomo, E., Inagaki, N., Maekawa, S.: Water stress effects on ribulose-1,5,-biphosphate carboxylase and its relationship to photosynthesis in sunflower leaves. — In: Mathis, M. (ed.): Photosynthesis: from Light to Biosphere. Vol. IV. Pp. 597–600. Kluwer Academic Publisher, Dordrecht-London 1995.

    Google Scholar 

  • Kathirvelan, P., Kalaiselvan, P.: Groundnut (Arachis hypogaea L.) leaf area estimation using allometric model. — Res. J. Agr. Biol. Sci. 3: 59–61, 2007.

    Google Scholar 

  • Kicheva, M.L., Tsonev, T.D., Popova, L.P.: Stomatal and nonstomatal limitation of photosynthesis in two wheat cultivars subjected to water stress. — Photosynthetica 30: 107–116, 1994.

    CAS  Google Scholar 

  • Krishnamurthy, L., Vadez, V., Devi, M.J. et al.: Variation in transpiration efficiency and its related traits in a groundnut (Arachis hypogaea L.) mapping population. — Field Crops Res.: doi:10.1016/j.fcr.2007.06.009, 2007.

    Google Scholar 

  • Lauer, K.J., Boyer, J.S.: Internal CO2 measures directly in leave: absicisic acid and low leaf water potential cause opposing effects. — Plant Physiol. 98: 1010–1016, 1992.

    Article  Google Scholar 

  • Lauriano, J.A., Ramalho, J.C., Lidon, F.C., Matos, M.C.: Peanut photosynthesis under drought and re-watering. — Photosynthetica 42: 37–41, 2004.

    Article  CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Leport, L., Turner, N.C., French, R.J. et al.: Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. — Eur. J. Agron. 11: 279–291, 1999.

    Article  Google Scholar 

  • Lopez, C.M.L., Takahashi, H., Yamazaki, S.: Plant water relations of Kidney bean plants treated with NaCl and foliarly applied glycine betaine. — J. Agron. Crop. Sci. 188: 73–80, 2002.

    Article  CAS  Google Scholar 

  • Ludlow, M.M., Muchow, R.: A critical evaluation of traits for improving crop yields in water limited environments. — Adv. Agron. 43: 107–153, 1990.

    Article  Google Scholar 

  • Moreshat, S., Bridges, D.C., NeSmith, D.S., Huang, B.: Effects of water stress on competitive interaction of peanut and sicklepod. — Agron. J. 88: 636–644, 1996.

    Article  Google Scholar 

  • Ndunguru, B.J., Ntare, B.R., Williams, T.H., Greenberg, D.C.: Assessment of groundnut cultivars for end-of-season drought tolerance in Sahelian environment. — J. Agr. Res. 125: 79–85, 1995.

    Google Scholar 

  • Pallas, J.E.: An apparent anomaly in peanut leaf conductance. — Plant Physiol. 65: 848–851, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Pallas, J.E., Samish, Y.B., Willmer, C.M.: Endogenous rhythmic activity of photosynthesis, transpiration, dark respiration, and carbon dioxide compensation point of peanut leaves. — Plant Physiol. 53: 907–911, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Passioura, J.B.: Environmental biology and crop improvement. — Funct. Plant Biol. 29: 537–546, 2002.

    Article  Google Scholar 

  • Pinheiro, C., Chaves, M.M.: Photosynthesis and drought: can we make metabolic connections from available data? — J. Exp. Bot. 62: 869–882, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, T.Y., Reddy, V.R., Anbumozhi, V.: Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. — Plant Growth Regul. 41: 75–88, 2003.

    Article  CAS  Google Scholar 

  • Ritchie, S.W., Nguyen, H.T., Holaday, A.S.: Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. — Crop Sci. 30: 105–111, 1990.

    Article  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., Sheen, J.: Sugar sensing and signaling in plants: conserved and novel mechanisms. — Annu. Rev. Plant Biol. 57: 675–709, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sadasivam, S., Manickam, A.: Biochemical Methods. 2nd Ed. — New Age Int. Limited Publishers, Tamil Nadu Agricultural University, Coimbatore 1996.

    Google Scholar 

  • Sharp, R.E.: Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. — Plant Cell Environ. 25: 211–222, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular responses to drought and cold stress. — Curr. Opin. Biotech. 7: 161–167, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. — J. Exp. Bot. 58: 221–227, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, T.R., Ludlow, M.M.: Who taught plants thermodynamics? The unfulfilled potential of plant water potential. — Aust. J. Plant Physiol. 12: 213–217, 1985.

    Article  Google Scholar 

  • Smith, C.W.: Crop Production: Evolution, History and Technology. — John Wiley & Sons, New York 1995.

    Google Scholar 

  • Somerville, C., Briscoe, J.: Genetic engineering and water. — Science 292: 2217, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa, R., Salvi, S.: Genomics-based approaches to improve drought tolerance of crops. — Trends Plant Sci. 11: 405–412, 2006

    Article  PubMed  CAS  Google Scholar 

  • Vu, J.C.V.: Acclimation of peanut (Arachis hypogea L.) leaf photosynthesis to elevated growth CO2 and temperature. — Environ. Exp. Bot. 53: 85–95, 2005.

    Article  CAS  Google Scholar 

  • Woo, N.S., Badger, M.R., Pogson, B.J.: A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. — Plant Methods 4: 27–27, 2008.

    Article  PubMed  Google Scholar 

  • Wright, G.C., Nageswara Rao, R.C.: Groundnut Water Relations. — In: Smartt, J.T. (ed.): The Groundnut Crop. Pp. 281–335. Springer, Dordrecht 1994.

    Chapter  Google Scholar 

  • Wright, G.C., Rachaputi, N.R., Nigam, S.N., Basu, M.S.: More efficient breeding of drought resistant groundnut in India and Australia. — IAN 22: 20–24, 2002.

    Google Scholar 

  • Yamaguchi-Shinozaki, K., Urao, T., Shinozaki, K.: Regulation of genes that are induced by drought stress in Arabidopsis thaliana. — J. Plant Res. 108: 127–136, 1995.

    Article  CAS  Google Scholar 

  • Yordanov, I., Velikova, V., Tsonev, T.: Plant Responses to drought, acclimation, and stress tolerance. — Photosynthetica 38: 171–186, 2000.

    Article  CAS  Google Scholar 

  • Zhang, J.Z., Creelman, R.A., Zhu J-K: From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. — Plant Physiol. 135: 615–621, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Jeyaramraja.

Additional information

Acknowledgements: Authors are grateful to the Management of Karpagam Arts and Science College for their encouragement in addition to providing greenhouse, laboratory, and all other equipment to conduct this study. Financial support from UGC, New Delhi is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyaramraja, P.R., Thushara, S.S. Sequence of physiological responses in groundnut (Arachis hypogaea L.) subjected to soil moisture deficit. Photosynthetica 51, 395–403 (2013). https://doi.org/10.1007/s11099-013-0037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0037-y

Additional key words

Navigation