Skip to main content
Log in

The responses of photosynthetic rate and stomatal conductance of Fraxinus rhynchophylla to differences in CO2 concentration and soil moisture

  • Published:
Photosynthetica

Abstract

The photosynthetic parameters in leaves of three-year-old seedlings of Fraxinus rhynchophylla L. were studied under different soil water conditions and CO2 concentrations ([CO2]) with a LI-COR 6400 portable photosynthesis system. The objective was to investigate the response of photosynthesis and stomatal conductance (g s) to various [CO2] and soil water conditions, and to understand the adaptability of F. rhynchophylla to such conditions. The results showed that the soil water content (RWC) required to maintain high photosynthetic productivity in F. rhynchophylla was 49.5–84.3%; in this range, net photosynthetic rate (P N) rose with [CO2] increasing from 500 to 1,400 μmol mol−1. Outside this RWC range, P N decreased significantly. The apparent maximum photosynthetic rate (P max,c) and carboxylation velocity (V c) increased with increasing RWC and remained relatively high, when RWC was between 49.5 and 96.2%. CO2 compensation points and photorespiration rate exhibited a trend opposite to that of P max,c and V c, indicating that moderate water stress was beneficial for increasing plant assimilation, decreasing photorespiration, and increasing production of photosynthates. g s declined significantly with increasing [CO2] under different water supplies, but the RWC range maintaining high g s increased. g s reached its maximum, when RWC was approximately 73% and then decreased with declining RWC. The maximal g s was found with increasing RWC. Thus, based on photosynthetic characteristics in artificial, vegetation construction in semiarid loess hill and gully area, F. rhynchophylla could be planted in habitats of low soil water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a :

air CO2 concentration

C i :

intercellular CO2 concentration

C s0 :

constant; [CO2] — CO2 concentration(s)

FC:

field capacity

g s :

stomatal conductance

g smax :

maximum stomatal conductance

P max,c :

apparent maximum photosynthetic rate

P N :

net photosynthetic rate

P Nmax :

maximum net photosynthetic rate

PPFD:

photosynthetic photon flux density

RH:

relative humidity

R D :

dark respiration rate

R p :

photorespiration rate

RWC:

relative soil water content

R 2 :

correlation coefficient

SWC:

soil water content

T a :

atmospheric temperature

V c :

carboxylation velocity

Γ:

CO2 compensation points

References

  • Ainsworth, E.A., Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. — Plant Cell Environ. 30: 258–270, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Allen, L.E.J., Valle, P.R., Jones, J.W., Jones, P.H.: Soybean leaf water potential responses to carbon dioxide and drought. — Agron. J. 90: 375–383, 1998.

    Article  Google Scholar 

  • Avola, G., Cavallaro, V., Patanè, C., Riggi, E.: Gas exchange and photosynthetic water use efficiency in response to light, CO2 concentration and temperature in Vicia faba. — J. Plant Physiol. 165: 796–804, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Baker, J.T., Allen, M.J., Boote, K.J., Pickering, N.B.: Rice responses to drought under carbon dioxide enrichment. II. Photosynthesis and evapotranspiration. — Glob. Change Biol. 3:129–138, 1997.

    Article  Google Scholar 

  • Boucher, J.F., Bernier, P.Y., Munson, A.D.: Radiation and soil temperature interactions on the growth and physiology of eastern white pine (Pinus strobus L.) seedlings. — Plant Soil 236: 165–174, 2001.

    Article  CAS  Google Scholar 

  • Cannon, W.N., Roberts, B.R.: Stomatal resistance and the ratio of intercellular to ambient carbon dioxide in container-grown yellow-poplar seedlings exposed to chronic ozone fumigation and water stress. — Environ. Exp. Bot. 35: 161–165, 1995.

    Article  CAS  Google Scholar 

  • Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P., Ramonet, M.: Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. — Climatic Change 103: 69–92, 2010.

    Article  CAS  Google Scholar 

  • Croonenborghs, S., Ceusters, J., Londers, E., De Proft, M.P.: Effects of elevated CO2 on growth and morphological characteristics of ornamental bromeliads. — Sci. Hort. 121: 192–198, 2009.

    Article  CAS  Google Scholar 

  • Cure, J.D., Acock, B.: Crop responses to carbon dioxide doubling: A literature survey. — Agr. Forest Meteorol. 38: 127–145, 1986.

    Article  Google Scholar 

  • Beeck, M.O., Löw, M., Deckmyn, G., Ceulemans, R.: A comparison of photosynthesis-dependent stomatal models using twig cuvette field data for adult beech (Fagus sylvatica L.). — Agr. Forest Meteorol. 150: 531–540, 2010.

    Article  Google Scholar 

  • Drake, B.G., González-Meler, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2? — Annu. Rev. Plant Physiol. 48: 607–637, 1997.

    Google Scholar 

  • Fang, H.Y., Cai, Q.G., Chen, H., Li, Q.Y.: Effect of rainfall regime and slope on runoff in a gullied loess region on the Loess Plateau in China. — Environ. Manage. 42: 402–411, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Farazdaghi, H.: The single-process biochemical reaction of Rubisco: A unified theory and model with the effects of irradiance, CO2 and rate-limiting step on the kinetics of C3 and C4 photosynthesis from gas exchange. — Biosystems 103: 265–284, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Fleisher, D.H., Timlin, D.J., Reddy, V.R.: Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. — Agr. Forest Meteorol. 148: 1109–1122, 2008.

    Article  Google Scholar 

  • Flexas, J., Ribas-Carbó, M., Bota, J., Galmés, J., Henkle, M., Martínez-Cañellas, S., Medrano, H.: Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. — New Phytol. 172: 73–82, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Geissler, N., Hussin, S., Koyro, H.W.: Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. — Planta 231: 583–594, 2009.

    Article  PubMed  Google Scholar 

  • Ghannoum, O., von Caemmerer, S., Ziska, L.H.: The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. — Plant Cell Environ. 23: 931–942, 2000.

    Article  CAS  Google Scholar 

  • Heath, J., Kerstiens, G.: Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech. — Plant Cell Environ. 20: 57–67, 1997.

    Article  Google Scholar 

  • Hernández-Santana, V., Martínez-Fernández, J., Morán, C., Cano, A.: Response of Quercus pyrenaica (melojo oak) to soil water deficit: a case study in Spain. — Eur. J. For. Res. 127: 369–378, 2008.

    Article  Google Scholar 

  • Hui, D., Sims, D.A., Johnson, D.W., et al.: Effects of gradual versus step increases in carbon dioxide on Plantago photosynthesis and growth in a microcosm study. — Environ. Exp. Bot. 47: 51–66, 2002.

    Article  Google Scholar 

  • Irmak, S., Mutiibwa, D., Irmak, A., Arkebauer, T.J., Weiss, A., Martin, D.L., Eisenhauer, D.E.: On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density. — Agr. Forest Meteorol. 148: 1034–1044, 2008.

    Article  Google Scholar 

  • Jarvis, A.J., Young, P.C., Leedal, D.T., Chotai, A.: A robust sequential CO2 emissions strategy based on optimal control of atmospheric CO2 concentrations. — Climatic Change 86: 357–373, 2008.

    Article  CAS  Google Scholar 

  • Jarvis, P.G.: The interpretation of the variations in water potential and stomatal conductance found in canopies in the field. — Phil. Trans. R. Soc. Lond. B. 273: 593–610, 1976.

    Article  CAS  Google Scholar 

  • Jeon, M.W., Ali, M.B., Hahn, E.J., Paek, K.Y.: Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. — Environ. Exp. Bot. 55: 183–194, 2006.

    Article  CAS  Google Scholar 

  • Jian, H.Y., Zou, S.Q.: [The photosynthetic characteristics in leaves of carpet grass Axonopus compressus.] — Guihaia 23: 181–184, 2003. [In Chin.]

    Google Scholar 

  • Jiang, C.D., Gao, H.Y., Zou, Q., Jiang, G.M., Li, L.H.: Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. — Environ. Exp. Bot. 55: 87–96, 2006.

    Article  CAS  Google Scholar 

  • Ju, G.S., Wu, J.Y., Zhao, J.F., Sun, Z.Y.: [Study on the photosynthetic characteristics of the Pennisetum alopecuroides L. Spreng.] — Acta Agr. Nucl. Sin. 19: 451–455, 2005. [In Chin.]

    CAS  Google Scholar 

  • Kettunen, R., Saarnio, S., Martikainen, P.J., Silvola, J.: Increase of N2O fluxes in agricultural peat and sandy soil under elevated CO2 concentration: Concomitant changes in soil moisture, groundwater table and biomass production of Phleum pratense. — Nutr. Cycl. Agroecosyst. 74: 175–189, 2006.

    Article  Google Scholar 

  • Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. — Ann. Math. Stat. 23: 462–466, 1952.

    Article  Google Scholar 

  • Kimball, B.A., Kobayashi, K., Bindi, M.: Responses of agriculture crops to free-air CO2 enrichment. — Advan. Agron. 77: 293–368, 2002.

    Article  Google Scholar 

  • Kosugi, Y., Takanashi, S., Matsuo, N., Tanaka, K., Tanaka, H.: Impact of leaf physiology on gas exchange in a Japanese evergreen broad-leaved forest. — Agr. Forest Meteorol. 139: 182–199, 2006.

    Article  Google Scholar 

  • Kozaki, A., Takeba, G.: Photorespiration protects C3 plants from photooxidation. — Nature 384: 557–560, 1996.

    Article  CAS  Google Scholar 

  • Kruijt, B., Barton, C., Rey, A., Jarvis, P.G.: The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate. — Hydrol. Earth Syst. Sci. 3: 55–69, 1999.

    Article  Google Scholar 

  • Lambreva, M., Stoyanova-Koleva, D., Baldjiev, G., Tsonev, T.: Early acclimation changes in the photosynthetic apparatus of bean plants during short-term exposure to elevated CO2 concentration under high temperature and light intensity. — Agr. Ecosyst. Environ. 106: 219–232, 2005.

    Article  CAS  Google Scholar 

  • Larcher, W.: Physiological Plant Ecology. Academic Press, Beijing 1980.

    Book  Google Scholar 

  • Laurin, É., Nunes, M.C.N., Émond, J.P., Brecht J.K.: Residual effect of low-pressure stress during simulated air transport on Beit Alpha-type cucumbers: Stomata behavior. — Postharvest Biol. Technol. 41: 121–127, 2006.

    Article  Google Scholar 

  • Liang, X., Zhang, L.Q., Zhao, G.Q.: [A comparison of photosynthetic characteristics between Spartina alterniflora and Phragmites australis under different CO2 concentrations.] — Acta Ecol. Sin. 26: 842–848, 2006. [In Chin.]

    CAS  Google Scholar 

  • Ludlow, M.M., Wilson, G.L.: Photosynthesis of tropical pasture plants. I. Illuminance, carbon dioxide concentration, leaf temperature, and leaf-air vapor pressure difference. — Aust. J. Biol. Sci. 24: 449–470, 1971.

    Google Scholar 

  • Massacci, A., Nabiev, S.M., Pietrosanti, L., Nematov, S.K., Chernikova, T.N., Thor, K., Leipner, J.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. — Plant Physiol. Biochem. 46: 189–195, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, K., Ohta, T., Tanaka, T.: Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. — Agr. Forest Meteorol. 132: 44–57, 2005.

    Article  Google Scholar 

  • Morison, J.I.L., Lawlor, D.W.: Interactions between increasing CO2 concentration and temperature on plant growth. — Plant Cell Environ. 22: 659–682, 1999.

    Article  CAS  Google Scholar 

  • Mott, K.A.: Sensing of atmospheric CO2 by plants. — Plant Cell Environ. 13: 731–737, 1990.

    Article  CAS  Google Scholar 

  • Mott, K.A., Buckley, T.N.: Patchy stomatal conductance: emergent collective behaviour of stomata. — Trends Plant Sci. 5: 258–262, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Mulholland, B.J., Craigon, J., Black, C.R., et al.: Growth, light interception and yield responses of wheat (Triticum aesti6um L.) grown under elevated CO2 and O3 in open-top chambers. — Glob. Change Biol. 4: 121–130, 1998.

    Article  Google Scholar 

  • Niklaus, P.A., Wohlfender, M., Siegwolf, R., Körner, C.: Effects of six years atmospheric CO2 enrichment on plant, soil, and soil microbial C of a calcareous grassland. — Plant Soil 233: 189–202, 2001.

    Article  CAS  Google Scholar 

  • Nogués, S., Alegre, L.: An increase in water deficit has no impact on the photosynthetic capacity of field-grown Mediterranean plants. — Funct. Plant Biol. 29: 621–630, 2002.

    Article  Google Scholar 

  • Paoletti, E., Grulke, N.E.: Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. — Environ. Pollut. 137: 483–493, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Pérez, P., Zita, G., Morcuende R., Martínez-Carrasco, R.: Elevated CO2 and temperature differentially affect photosynthesis and resource allocation in flag and penultimate leaves of wheat. — Photosynthetica 45: 9–17, 2007.

    Article  Google Scholar 

  • Peschel, S., Beyer, M., Knoche, M.: Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting. — Sci. Hort. 97: 265–278, 2003.

    Article  Google Scholar 

  • Pfanz, H., Vodnik, D., Wittmann, C., Aschan, G., Batic, F., Turk, B., Macek, I.: Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. — Environ. Exp. Bot. 61: 41–48, 2007.

    Article  CAS  Google Scholar 

  • Pozo, A.D., Pérez, P., Morcuende, R., Alonso, A., Martínez-Carrasco, R.: Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply in a Mediterranean environment. — Plant Sci. 169: 908–916, 2005.

    Article  Google Scholar 

  • Ray, J.D., Sinclair, T.R.: The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. — J. Exp. Bot. 49: 1381–1386, 1998.

    CAS  Google Scholar 

  • Reiter, R., Höftberger, M., Green, T.G.A., Türk, R.: Photosynthesis of lichens from lichen-dominated communities in the alpine/nival belt of the Alps - II: Laboratory and field measurements of CO2 exchange and water relations. — Flora 203: 34–46, 2008.

    Article  Google Scholar 

  • Roussel, M.R., Ivlev, A.A., Igamberdiev, A.U.: Oscillations of the internal CO2 concentration in tobacco leaves transferred to low CO2. — J. Plant Physiol. 164: 1188–1196, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Rowland-Bamford, A.J., Backer, J.T., Allen, L.H., Bowes, G.: Acclimation of rice to changing atmospheric carbon dioxide concentration. — Plant Cell Environ. 14: 577–583, 1991.

    Article  CAS  Google Scholar 

  • Royer, D.L.: Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. — Rev. Palaeobot. Palynol. 114: 1–28, 2001.

    Article  PubMed  Google Scholar 

  • Smith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S., Fenstermaker, L.K., Seemann, J.R., Nowak, R.S.: Elevated CO2 increasing productivity and invasive species success in an arid ecosystem. — Nature 408: 79–82, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Špunda, V., Kalina, J., Urban, O. et al.: Diurnal dynamics of photosynthetic parameters of Norway spruce trees cultivated under ambient and elevated CO2: the reasons of midday depression in CO2 assimilation. — Plant Sci. 168: 1371–1381, 2005.

    Article  Google Scholar 

  • Sun, H., Gan, Z.M., Yan, J.P.: The impacts of urbanization on soil erosion in the Loess Plateau region. — J. Geogr. Sci. 11: 282–290, 2001.

    Article  Google Scholar 

  • Tartachnyk, I.I., Blanke, M.M.: Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. — New Phytol. 164: 441–450, 2004.

    Article  Google Scholar 

  • Thomley, J.H.M.: Mathematical models in plant physiology, a qualitative approach to problems. — Plant Crop Biol. 21: 107–129, 1983.

    Google Scholar 

  • Tuchman, N.C., Wahtera, K.A., Wetzel, R.G., Teeri, J.A.: Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. — Hydrobiologia 495: 203–211, 2003.

    Article  CAS  Google Scholar 

  • Turner, L.B., Humphreys, M.O., Cairns, A.J., Pollock, C.J.: Carbon assimilation and partitioning into non-structural carbohydrate in contrasting varieties of Lolium perenne. — J. Plant Physiol. 159: 257–263, 2002.

    Article  CAS  Google Scholar 

  • von Caemmerer, S., Ludwig, M., Millgate, A., Farquhar, G.D., Price, D., Badger, M.R., Furbank, R.T.: Carbon isotope discrimination during C4 photosynthesis: insights from transgenic plants. — Aust. J. Plant Physiol. 24: 487–493, 1977.

    Article  Google Scholar 

  • Wang, J.L., Yu, G.R., Wang, B.L., Qi, H., Xu, Z.J.: [Response of photosynthetic rate and stomatal conductance of rice to light intensity and CO2 concentration in northern China.] — Acta Phytoecol. Sin. 29: 16–25, 2005. [In Chin.]

    CAS  Google Scholar 

  • Wei, J.Q., Jiang, S.Y., Tang, H., Jiang, Y.S., Qi, X.X., Wang, M.L.: [Photosynthetic and transpiration characteristics of Corydalis saxicola and its response to light intensity and concentration of CO2.] — Guihaia 26: 317–320, 2006. [In Chin.]

    CAS  Google Scholar 

  • Weiss, I., Mizrahi, Y., Raveh, E.: Effect of elevated CO2 on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus. — Sci. Hor. 123: 531–536, 2010.

    Article  CAS  Google Scholar 

  • Whitfield, C.P., Davison, A.W., Ashenden, T.W.: Interactive effects of ozone and soil volume on Plantago major. — New Phytol. 134: 287–294, 1996.

    Article  CAS  Google Scholar 

  • Wilhelm, C., Selmar, D.: Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. — J. Plant Physiol. 168: 79–87, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Wingler, A., Quick, W.P., Bungard, R.A., Bailey, K.J., Lea, P.J., Leegood, R.C.: The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. — Plant Cell Environ. 22: 361–373, 1999.

    Article  CAS  Google Scholar 

  • Xia, X.J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., Asami, T., Chen, Z., Yu, J.Q.: Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. — Planta 230: 1185–1196, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Xu, D.Q.: The efficiency of photosynthesis. Shanghai Science and Technology Press, Shanghai 2001. [In Chin.]

    Google Scholar 

  • Xu, Y., Yang, B., Liu, G., Liu, P.: [Topographic differentiation simulation of crop yield and soil and water loss on the Loess Plateau.] — J. Geogr. Sci. 19: 331–339, 2009. [In Chin.]

    Article  Google Scholar 

  • Zaharah, S.S., Razi, I.M.: Growth, stomata aperture, biochemical changes and branch anatomy in mango (Mangifera indica) cv. Chokanan in response to root restriction and water stress. — Sci. Hort. 123: 58–67, 2009.

    Article  CAS  Google Scholar 

  • Zelitch, I.: The effect of glycidate, an inhibitor of glycolate synthesis, on photorespiration and net photosynthesis. — Arch. Biochem. Biophys. 163: 367–377, 1974.

    Article  CAS  PubMed  Google Scholar 

  • Zelitch, I.: Control of plant productivity by regulation of photorespiration. — Biol. Sci. 42: 510–516, 1982.

    Google Scholar 

  • Ziska, L.H., Sicher, R.C., Bunce, J.A.: The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. — Physiol. Plant. 105: 74–80, 1999.

    Article  CAS  Google Scholar 

  • Zhang, X.H., Liu, N., Guo, J.M.: [Comparative study of photosynthetic responses to short-term elevated CO2 in two Myrica species.] — Guizhou Science 24: 71–74, 2006. [In Chin.]

    Google Scholar 

  • Zhou, H.H., Chen, Y.N., Li, W.H., Chen, Y.P.: [Photosynthesis of Populus euphratica olive and its response to CO2 concentration and high temperature in arid environment.] — Acta Ecol. Sin. 29: 2797–2810, 2009. [In Chin.]

    Article  CAS  Google Scholar 

  • Zhu, W.Z., Wu, Y.B., Xue, J.H.: [Photosynthetic characteristics of Quercus pannosa in Gongga Mountain region.] — J. Nanjing For. Univ. 30: 25–28, 2006. [In Chin.]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Zhang.

Additional information

Acknowledgements: The work was financed by Major State Basic Research Development Program (No. 2012CB416904/zgc) and the National Natural Science Foundation of China (No. 31100468 and No. 31100196).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.Y., Zhang, G.C., Liu, X. et al. The responses of photosynthetic rate and stomatal conductance of Fraxinus rhynchophylla to differences in CO2 concentration and soil moisture. Photosynthetica 51, 359–369 (2013). https://doi.org/10.1007/s11099-013-0033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0033-2

Additional key words

Navigation