Abstract
Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants.
This is a preview of subscription content, access via your institution.
Abbreviations
- ABA:
-
abscisic acid
- ALA:
-
5-aminolevulinic acid
- Car:
-
carotenoids
- Chl:
-
chlorophyll
- Fi :
-
the fluorescence at transient inflection level
- Fo :
-
the minimal fluorescence
- Fm :
-
the maximal fluorescence
- Fp :
-
the fluorescence at peak level
- Fv :
-
the variable fluorescence
- g s :
-
stomatal conductance
- LHC:
-
light harvesting complex
- MAPKs:
-
mitogen-activated protein kinases
- NADPH:
-
reduced form of nicotinamide adenine dinucleotide phosphate
- NADP-ME:
-
NADP-malic enzyme
- OEC:
-
oxygen evolving complex
- qN or NPQ:
-
nonphotochemical quenching
- Pchlide:
-
protochlorophyllide
- PEPC:
-
phosphoenolpyruvate carboxylase
- P N :
-
net photosynthetic rate
- PPDK:
-
phosphopyruvate dikinase
- PSII:
-
photosystem II
- qP :
-
photochemical quenching
- RWC:
-
relative water content
- Rubisco:
-
ribulose-1,5-bisphosphate carboxylase/oxygenase
- RUBP:
-
ribulose-1,5-bisphosphate
- WUE:
-
water-use efficiency
References
Abdel Samad, H.M.: Counteraction of NaCl and CaCl2 or KCl on pigment, saccharide and mineral contents in wheat. — Biol. Plant. 35: 555–560, 1993.
Abdel-Latif, A.: Phosphoenolpyruvate carboxylase activity of wheat and maize seedlings subjected to salt stress. — Aust. J. Basic Appl. Sci. 2: 37–41, 2008.
Abdeshahian, M., Nabipour, M., Meskarbashee, M.: Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. — Int. J. Chem. Biol. Eng. 4: 184–186, 2010.
Akram, M.S., Ashraf, M.: Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). — J. Plant Nutr. 34: 1041–1057, 2011.
Akram, M.S., Athar, H.U.R., Ashraf, M.: Improving growth and yield of sunflower (Helianthus annuus L.) by foliar application of potassium hydroxide (KOH) under salt stress. — Pak. J. Bot. 39: 769–776, 2007.
Akram, N.A., Ashraf, M.: Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. — Agrochimica 55: 94–104, 2011.
Ali, Q., Athar, H.R., Ashraf, M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. — Plant Growth Regul. 56: 107–116, 2008.
Allakhverdiev, S.I., Los, D.A., Mohanty, P., Nishiyama, Y., Murata, N.: Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. — Biochim. Biophys. Acta 1767: 1363–1371, 2007.
Al-Taweel, K., Iwaki, T., Yabuta, Y., Shigeoka, S., Murata, N., Wadano, A.: A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. — Plant Physiol. 145: 258–265, 2007.
Aniszewski, T., Drozdov, S.N., Kholoptseva, E.S., Kurets, V.K., Obshatko, L.A., Popov, E.G. Talanov, A.V.: Effects of light and temperature parameters on net photosynthetic carbon dioxide fixation by whole plants of five lupin species (Lupinus albus L., Lupinus angustifolius L., Lupinus luteus L., Lupinus mutabilis Sweet. and Lupinus polyphyllus Lindl.). — Acta Agr. Scand., Sect. B, Soil Plant Sci. 51: 17–27, 2001.
Anjum, S.A., Xie, X, Wang, L. et al.: Morphological, physiological and biochemical responses of plants to drought stress. — Afr. J. Agr. Res. 6: 2026–2032, 2011.
Aragao, M.E.F., Guedes, M.M., Otoch, M.L.O., Guedes, M.I.F., Melo, D.F., Lima, M.G.S.: Differential responses of ribulose-1,5-bisphosphate carboxylase/oxygenase activities of two Vigna unguiculata cultivars to salt stress. — Braz. J. Plant Physiol. 17: 207–212, 2005.
Araus, J.L., Amaro, T., Voltas, J. et al.: Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. — Field Crops Res. 55: 209–223, 1998.
Arfan, M., Athar, H. R., Ashraf, M.: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in differently adapted spring wheat cultivars under salt stress? — J. Plant Physiol. 6: 685–694, 2007.
Ashraf, M.: Breeding for salinity tolerance in plants. — Crit. Rev. Plant Sci. 13: 17–42, 1994.
Ashraf, M.: Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. — Environ. Exp. Bot. 45: 155–163, 2001.
Ashraf, M.: Some important physiological selection criteria for salt tolerance in plants. — Flora 199: 361–376, 2004.
Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotechnol. Adv. 27: 84–93, 2009.
Ashraf, M., Ali, Q.: Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). — Environ. Exp. Bot. 63: 266–273, 2008.
Ashraf, M., Karim, F.: Screening of some cultivars/lines of black gram (Vigna mungo I., Hepper) for resistance to water stress. — Trop. Agr. 68: 57–62, 1991.
Ashraf, M., Mehmood, S.: Response of four Brassica species to drought stress. — Environ. Exp. Bot. 30: 93–100, 1990.
Ashraf, M., Nawazish, S., Athar, H.R.: Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in maize (Zea mays L.). — Pak. J. Bot. 39: 1123–1131, 2007.
Ashraf, M., O’Leary, J.W.: Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress, II. Water relations and photosynthetic capacity. — Acta Bot. Neerl. 45: 29–39, 1996.
Ashraf, M., Sultana, R.: Combination effect of NaCl salinity and N-form on mineral composition of sunflower plants. — Biol. Plant. 43: 615–619, 2000.
Ashraf, M.Y., Azmi, A.R., Khan, A.H., Ala, S.A.: Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). — Acta Physiol. Plant. 16: 185–191, 1994.
Athar, H., Ashraf, M.: Photosynthesis under drought stress. — In: Pessarakli, M. (ed.): Photosynthesis, 2nd Ed. Pp. 795–810. CRC Press, New York 2005.
Baker, N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.
Baker, N.R., Rosenqvist, E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. — J. Exp. Bot. 55: 1607–1621, 2004.
Balouchi, H.R.: Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. — Int. J. Biol. Life Sci. 6: 56–66, 2010.
Bączek-Kwinta, R., Kozieł, A., Seidler-Łożykowska, K.: Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions? — Photosynthetica 49: 87–97, 2011.
Bayramov, S.M., Babayev, H.G., Khaligzade, M.N. et al.: Effect of water stress on protein content of some Calvin cycle enzymes in different wheat genotypes. — PANAS 65: 106–111, 2010.
Begonia, G.B., Begonia, M.T.: Plant photosynthetic production as controlled by leaf growth, phenology, and behavior. — Photosynthetica 45: 321–333, 2007.
Benfey, P.N., Chua, N.H.: The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. — Science 25: 959–966, 1990.
Berry, J.A., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.
Bijanzadeh, E., Emam, Y.: Effect of defoliation and drought stress on yield components and chlorophyll content of wheat. — Pak. J. Biol. Sci. 13: 699–705, 2010.
Biswal, B., Joshi, P.N., Raval, M.K., Biswal, U.C.: Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. — Curr. Sci. 101: 47–56, 2011.
Biswal, B., Raval, M.K., Biswal, U.C., Joshi, P.: Response of photosynthetic organelles to abiotic stress: modulation by sulfur metabolism. — In: Khan, N.A., Singh, S., Umar, S. (ed.): Sulfur Assimilation and Abiotic Stress in Plants. Pp. 167–191. Springer-Verlag, Berlin — Heidelberg 2008.
Bousba, R., Ykhlef, N., Djekoun, A.: Water use efficiency and flag leaf photosynthetic in response to water deficit of durum wheat (Triticum durum Desf.). — World J. Agr. Sci. 5: 609–616, 2009.
Brock, M.T., Galen, C.: Drought tolerance in the alpine dandelion, Taraxacum ceratophorum (Asteraceae), its exotic congenter T. officinale and interspecific hybrids under natural and experimental conditions. — Amer. J. Bot. 92: 1311–1321, 2005.
Brown, R.H., Bouton, J.H.: Physiology and genetics of interspecific hybrids between phytosynthetic type. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 435–456, 1993.
Brugnoli, E., Scartazza, A., De Tullio, M.C., et al.: Zeaxanthin and non-photochemical quenching in sun and shade leaves of C3 and C4 plants. — Physiol. Plant. 104: 727–734, 1998.
Caires, A.R.L., Scherer, M.D., Santos, T.S.B., Pontim, B.C.A., Gavassoni, W.L., Oliveira, S.L.: Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence. — J. Fluorescence 20: 645–649, 2010.
Camejo, D., Rodríguez, P., Morales, A.M. et al.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. — J. Plant Physiol. 162: 281–289, 2005.
Centritto, M., Brilli, F., Fodale, R. et al.: Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. — Tree Physiol. 31: 258–261, 2011.
Chandra Babu, R., Srinivasan, P., Natarajaratnam, N., Rangasamy, S.: Relationship between leaf photosynthetic rate and yield in blackgram (Vigna mungo L. Hepper) genotypes. — Photosynthetica 19: 159–163, 1985.
Chattopadhyay, S., Ang, L.H., Puente, P. et al.: Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. — Plant Cell 10: 673–683, 1998.
Chaves, M.M., Flexas, J., Pinheiro, C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. — Ann. Bot. 103: 551–560, 2009.
Chinthapalli, B., Murmu, J., Raghavendra, A.S.: Dramatic difference in the responses of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants. — J. Exp. Bot. 54: 707–714, 2003.
Conde, A., Chaves, M.M., Gerós, H.: Membrane transport, sensing and signaling in plant adaptation to environmental stress. — Plant Cell Physiol. 52: 1583–1602, 2011.
Cornish, K., Radin, J.W., Turcotte, E.L., Luand, Z., Zeiger, E.: Enhanced photosynthesis and stomatal conductance of Pima cotton (Gossypium barbadense L.) bred for increased yield. — Plant Physiol. 97: 484–489, 1991.
Crafts-Brandner, S.J., Salvucci, M.E.: Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. — Proc. Natl. Acad. Sci. USA 97: 13430–13435, 2000.
Crafts-Brandner, S.J., Salvucci, M.E.: Sensitivity of photosynthesis in a C4 plant maize to heat stress. — Plant Physiol. 129: 1773–1780, 2002.
Crosbie, T.M., Pearce, R.B.: Effects of recurrent phenotypic selection for high and low photosynthesis on agronomic traits in two maize populations. — Crop Sci. 22: 809–813, 1982.
Curtis, P.S., Läuchli, A.: The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress. — Aust. J. Plant Physiol. 13: 353–365, 1986.
Curtiss, J., Rodriguez-Uribe, L., Stewart, J.M., Zhang, J.: Identification of differentially expressed genes associated with semigamy in pima cotton (Gossypium barbadense L.) through comparative microarray analysis. — BMC Plant Biol. 11: 49, 2011.
da Graça, J.P., Rodrigues, F.A., Farias, J.R.B., de Oliveira, M.C.N., Hoffmann-Campo, C.B., Zingaretti, S.M.: Physiological parameters in sugarcane cultivars submitted to water deficit. — Braz. J. Plant Physiol. 22: 189–197, 2010.
da Silva, E.N., Ribeiro, R.V., Ferreira-Silva, S.L., Viégas, R.A., Silveira, J.A.G.: Salt stress induced damages on the photosynthesis of physic nut young plants. — Sci. Agr. 68: 62–68, 2011.
Dai, X., Xu, Y., Ma, O., et al.: Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. — Plant Physiol. 143: 1739–1751, 2007.
Damayanthi, M.M.N., Mohotti, A.J., Nissanka, S.P.: Comparison of tolerant ability of mature field grown tea (Camellia sinensis L.) cultivars exposed to a drought stress in passara area. — Trop. Agr. Res. 22: 66–75, 2010.
David, M.M., Coelho, D., Barrote, I., Correia, M. J.: Leaf age effects on photosynthetic activity and sugar accumulation in droughted and rewatered Lupinus albus plants. — Aust. J. Plant Physiol. 25: 299–306, 1998.
Davison, P.A., Hunter, C.N., Horton, P.: Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. — Nature 418: 203–206, 2002.
Demmig-Adams, B., Adams, W.W. III: Carotenoid composition in sun and shade leaves of plants with different life forms. — Plant Cell Environ. 15: 411–419, 1992.
Dias, M.C., Brüggemann, W.: Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. — Photosynthetica 48: 96–102, 2010a.
Dias, M.C., Brüggemann, W.: Water-use efficiency in Flaveria species under drought-stress conditions. — Photosynthetica 48: 469–473, 2010b.
Diédhiou, C.J., Popova, O.V., Dietz, K.J., Golldack, D.: The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. — BMC Plant Biol. 8: 49, 2008.
Din, J., Khan, S.U., Ali, I., Gurmani, A.R.: Physiological and agronomic response of canola varieties to drought stress. — J. Anim. Plant Sci. 21: 78–82, 2011.
Dobrikova, A., Petkanchin, I., Taneva, S.G.: Temperatureinduced changes in the surface electric properties of thylakoids and photosystem II membrane fragments. — Colloid. Surface. A 209: 185–192, 2002.
Dodd, I.C.: Hormonal interactions and stomatal responses. — J. Plant Growth Regul. 22: 32–46, 2003.
Doubnerová, V., Ryšlavá, H.: What can enzymes of C4 photosynthesis do for C3 plants under stress? — Plant Sci. 180: 575–583, 2011.
Du, Y.C., Nose, A., Wasano, K., Uchida, Y.: Responses to water stress of enzyme activities and metabolite levels in relation to sucrose and starch synthesis, the Calvin cycle and the C4 pathway in sugarcane (Saccharum sp.) leaves. — Aust. J. Plant Physiol. 25: 253–260, 1998.
Duan, H.G., Yuan, S., Liu, W.J. et al.: Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. — J. Integr. Plant Biol. 48: 920–927, 2006.
Dulai, S., Molnár, I., Molnár-Láng, M.: Changes of photosynthetic parameters in wheat/barley introgression lines during salt stress. — Acta Biol. Szeged 55: 73–75, 2011.
Dutta, S., Mohanty, S., Tripathy, B.C.: Role of temperature stress on chloroplast biogenesis and protein import in pea. — Plant Physiol. 150: 1050–1061, 2009.
Eckardt, N.A.: A new chlorophyll degradation pathway. — Plant Cell 21: 700, 2009.
Efeoglu, B., Ekmekçi, Y., Çiçek, N.: Physiological responses of three maize cultivars to drought stress and recovery. — S. Afr. J. Bot. 75: 34–42, 2009.
Efeoglu, B., Terzioglu, S., Photosynthetic responses of two wheat varieties to high temperature. — EurAsia J. BioSci. 3: 97–106, 2009.
El-Shintinawy, F.: Photosynthesis in two wheat cultivars differing in salt susceptibility. — Photosynthetica 38: 615–620, 2000.
Estill, K., Delaney, R.H., Smith, W.K., Ditterline, R.L.: Water relations and productivity of alfalfa leaf chlorophyll variants. — Crop Sci. 31: 1229–1233, 1991.
Everard, J.D., Gucci, R, Kann, S.C., Flore, J.A., Loescher, W.H.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. — Plant Physiol. 106: 281–292, 1994.
Fang, Z., Bouwkamp, J., Solomos, T.: Chlorophyllase activities and chlorophyll degradation during leaf senescence in nonyellowing mutant and wild type of Phaseolus vulgaris L. — J. Exp. Bot. 49: 503–510, 1998.
Faville, M.J., Silvester, W.B., Allan Green, T.G., Jermyn, W.A.: Photosynthetic characteristics of three asparagus cultivars differing in yield. — Crop Sci. 39: 1070–1077, 1999.
Feng, L.L., Han, Y.J., Liu, G. et al.: Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. — Funct. Plant Biol. 34: 822–834, 2007.
Fischer, R.A., Rees, D., Sayre, K.D. et al.: Wheat yield progress is associated with higher stomatal conductance, higher photosynthetic rate and cooler canopies. — Crop Sci. 38: 1467–1475, 1998.
Flagella, Z., Campanile, R.G., Ronga, G. et al.: The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance. — Plant Sci. 118: 127–133, 1996.
Flexas, J., Bota, J., Escalona, J.M. et al.: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. — Funct. Plant Biol. 29: 461–471, 2002.
Flexas, J., Bota, J., Loreto, F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. — Plant Biol. 6: 269–279, 2004.
Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes. — Annu. Rev. Plant Physiol. 28: 89–121, 1977.
Freschi, L., Mercier, H.: Connecting environmental stimuli and crassulacean acid metabolism expression: Phytohormones and other signaling molecules. — Prog. Bot. 73: 231–255, 2012.
Fristedt, R., Willig, A., Granath, A. et al.: Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. — Plant Cell 21: 3950–3964, 2009.
Fukayama, H., Tsuchida, H., Agarie, S.: Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. — Plant Physiol. 127: 1136–1146, 2001.
Fukushima, E., Arata, Y., Endo, T. et al.: Improved salt tolerance of transgenic tobacco expressing apoplastic yeastderived invertase. — Plant Cell Physiol. 42: 245–249, 2001.
Galmés, J., Medrano, H., Flexas, J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. — New Phytol. 175: 81–93, 2007.
Galmés, J., Ribas-Carbó, M., Medrano, H., Flexas, J.: Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. — J. Exp. Bot. 62: 653–665, 2011.
Garg, A., Kim, J.K., Owens, T.G., et al.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. — Proc. Natl. Acad. Sci. USA 99: 15898–15903, 2002.
Geissler, N., Hussin, S., Koyro, H.W.: Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. — Environ. Exp. Bot. 65: 220–231, 2009.
Ghosh, S., Bagchi, S., Majumder, A.L.: Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. — Plant Sci. 160: 1171–1181, 2001.
Gill, S.S, Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.
Gill, S.S., Khan, N.A., Tuteja, N.: Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars: An evaluation of the role of antioxidant machinery. — Plant Signal Behav. 6: 293–300, 2011.
Gimenez, C., Mitchell, V.J., Lawlor, D.W.: Regulation of photosynthesis rate of two sunflower hybrids under water stress. — Plant Physiol. 98: 516–524, 1992.
Gomathi, R., Rakkiyapan, P.: Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. — Int. J. Plant Physiol. Biochem. 3: 67–74, 2011.
Gombos, Z., Wada, H., Hideg, E., Murata, N.: The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. — Plant Physiol. 104: 563–567, 1994.
Goodall, G.J., Filipowicz, W.: Different effects of intron nucleotide composition and secondary structure on premRNA splicing in monocot and dicot plants. — EMBO J. 10: 2635–2644, 1991.
Guidi, L., Nali, C., Ciompi, S. et al.: The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. — J. Exp. Bot. 48: 173–179, 1997.
Gunasekera, D., Berkowitz, G.A.: Use of transgenic plants with ribulose-1,5-bisphosphate carboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water stress. — Plant Physiol. 103: 629–635, 1993.
Guo, B.Z., Butrón, A., Li, H., Widstrom, N.W., Lynch, R.E.: Restriction fragment length polymorphism assessment of the heterogeneous nature of maize population GT-MAS:gk and field evaluation of resistance to aflatoxin production by Aspergillus flavus. — J. Food Prot. 65: 167–171, 2002.
Guóth, A., Tari, I., Gallé, I., et al.: Chlorophyll a fluorescence induction parameters of flag leaves characterize genotypes and not the drought tolerance of wheat during grain filling under water deficit. — Acta Biol. Szeged. 53: 1–7, 2009.
Haldimann, P., Strasser, R.J.: Effects of anaerobiosis as probed by the polyphasic chlorophyll fluorescence rise kinetics in pea (Pisum sativum L.). — Photosynth. Res. 62: 67–83, 1999.
Hamada, A.M., Al-Hakimi, A.M.A.: Salicylic acid versus salinity-drought induced stress on wheat seedlings. — Rostlinná výroba 47: 444–450, 2001.
Hamada, A.M., El-Enany, A.E.: Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. — Biol. Plant. 36: 75–81, 1994.
Hamdani, S., Gauthier, A., Msilini, N., Carpentier, R.: Positive charges of polyamines protect PSII in isolated thylakoid membranes during photoinhibitory conditions. — Plant Cell Physiol. 52: 866–873, 2011.
Hamilton, D.W.A., Hills, A., Kohler, B., Blatt, M.R.: Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. — Proc. Natl. Acad. Sci. USA 97: 4967–4972, 2000.
Han, W., Xu, X.W., Li, L. et al.: Chlorophyll a fluorescence responses of Haloxylon ammodendron seedlings subjected to progressive saline stress in the Tarim desert highway ecological shelterbelt. — Photosynthetica 48: 635–640, 2010.
Harb, A., Krishnan, A., Madana, M.R.: Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. — Plant Physiol. 154: 1254–1271, 2010.
Harpaz-Saad, S., Azoulay, T., Arazi, T. et al.: Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. — Plant Cell 19: 1007–1022, 2007.
Häusler, R.E., Hirsch, H.J., Kreuzaler, F., Peterhansel, C.: Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. — J. Exp. Bot. 53: 591–607, 2002.
Havaux, M.: Short-term responses of photosystem I to heat stress — Induction of a PS II-independent electron transport through PS I fed by stromal components. — Photosynth. Res. 47: 85–97, 1996.
Havaux, M., Ernez, M., Lannoye, R.: Correlation between heat tolerance and drought tolerance in cereals demonstrated by rapid chlorophyll fluorescence tests. — J. Plant Physiol. 133: 555–560, 1988.
Havaux, M., Tardy, F., Ravene, J. et al.: Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. — Plant Cell Environ. 19: 1359–1368, 1996.
Hawkins, H. J., Lewis, O.A.M.: Combination effect of NaCl salinity, nitrogen form and calcium concentration on the growth and ionic content and gaseous properties of Triticum aestivum L. cv. Gamtoos. — New Phytol. 124: 161–170, 1993.
He, J.X., Wang, J., Liang, H.G.: Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. — Physiol. Plant. 93: 771–777, 1995.
Hernandez, J.A., Olmos, E., Corpas, F.J. et al.: Salt-induced oxidative stress in chloroplasts of pea plants. — Plant Sci. 105: 151–167, 1995.
Hester, M.W., Mendelsohn, I.A., Mckee, K.L.: Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. — Environ. Exp. Bot. 46: 277–297, 2001.
Hieber, A.D., Kawabata, O., Yamamoto, H.Y.: Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. — Plant Cell Physiol. 45: 92–102, 2004.
Hirel, B., Le Gouis, J., Ney, B., Gallais, A.: The challenge of improving nitrogen use efficiency in crop plants towards a more central role for genetic variability and quantitative genetics within integrated approaches. — J. Exp. Bot. 58: 2369–2387, 2007.
Huang, H., Zhang, Q., Zhao, L. et al..: Lutein plays a key role in the protection of photosynthetic apparatus in arabidopsis under severe oxidative stress? — Pak. J. Bot. 42: 2765–2774, 2010.
Huang, X., Luo, T., Fu, X. et al.: Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. — J. Exp. Bot. 62: 5191–5206, 2011.
Hudspeth, R.L., Grula, J.W., Dai, Z. et al.: Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Effects on biochemistry and physiology. — Plant Physiol. 98: 458–464, 1992.
Hura, T., Grzesiak, S., Hura, K., et al.: Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. — Acta Physiol. Plant. 28: 433–443, 2006.
Huseynova, M., Suleymanov, S.Y., Rustamova S.M., Aliyev. JA.: Drought-induced changes in photosynthetic membranes of two wheat (Triticum aestivum L.) cultivars. — Russ. Biokhimiya 74: 1109–1116, 2009.
Inagaki, M., Omori, E., Kim, J.Y., Komatsu, Y., Scott, G., Ray, M.K., Yamada, G., Matsumoto, K., Mishina, Y., Ninomiya-Tsuji, J.: TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling. — J. Biol. Chem. 283: 33080–33086, 2008.
Isaksson, C., Andersson, S.: Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. — Proc. R Soc. Biol. Sci. Ser. B 275: 309–314, 2008.
Islam, M.T.: Effect of temperature on photosynthesis, yield attributes and yield of aromatic rice genotypes. — Int. J. Sustain. Crop Prod. 6: 14–16, 2011.
Iwaia, M., Yokonoa, M., Inadab, N., Minagawa, J.: Live-cell imaging of photosystem II antenna dissociation during state transitions. — Proc. Natl. Acad. Sci. USA 107: 2337–2342, 2010.
Izui, K., Ishijima, S., Yamaguchi, Y. et al.: Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. — Nucleic Acids Res. 14: 1615–1628, 1986.
Jafarinia, M., Shariati, M.: Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. — Iran. J. Sci. Technol. A1: 71–76, 2012.
Jain, M., Tiwary, S., Gadre, R.: Sorbitol-induced changes in various growth and biochemicalp arameters in maize. — Plant Soil Environ. 56: 263–267, 2010.
Jaleel, C.A., Manivannan, P., Wahid, A. et al.: Drought stress in plants: a review on morphological characteristics and pigments composition. — Int. J. Agr. Biol. 11: 100–105, 2009.
James, R.A., Rivelli, A.R., Munns, R., von Caemmerer, S.: Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. — Funct. Plant Biol. 29: 1393–1403, 2002.
Jamil, M., Rehman, S., Lee, K.J., Kim, J.M., Kim, H., Rha, E.S.: Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. — Sci. Agr. 64: 111–118, 2007.
Janknecht, R.: Regulation of the ER81 transcription factor and its coactivators by mitogen- and stress-activated protein kinase 1 (MSK1). — Oncogene 22: 746–755, 2003.
Jeanneau, M., Gerentes, D., Foueillassar, X., et al.: Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. — Biochimie 84: 1127–1135, 2002.
Jia, W., Zhang, J.: Stomatal movements and long-distance signaling in plants. — Plant Signal Behav. 3: 772–777, 2008.
Jin, M-X, Li, D-Y, Mi, H.: Effects of high temperature on chlorophyll fluorescence induction and the kinetics of far red radiation-induced relaxation of apparent Fo in maize leaves. — Photosynthetica 40: 581–586, 2002.
Jonak, C., Ökrész, L., Bögre, L., Hirt, H.: Complexity, cross talk and integration of plant MAP kinase signalling. — Curr. Opin. Plant Biol. 5: 415–424, 2002.
Joshi, M.K., Desai, T.S., Mohanty, P.: Temperature-dependent alterations in the pattern of photochemical and nonphotochemical quenching and associated changes in the photosystem II conditions of the leaves. — Plant Cell Physiol. 36: 1221–1227, 1995.
Juan, M., Rivero, R.M., Romero, L., Ruiz, J.M.: Evaluation of some nutritional and biochemical indicators in selecting saltresistant tomato cultivars. — Environ. Exp. Bot. 54: 193–201, 2005.
Kaewsuksaeng, S.: Chlorophyll degradation in horticultural crops. — Walailak J. Sci. Technol. 8: 9–19, 2011.
Kaiser, W.M., Heber, U.: Photosynthesis under osmotic stress. Effect of high solute concentration on the permeability of the chloroplast envelope and on the activity of stroma enzymes. — Planta 153: 423–429, 1981.
Kajala, K., Brown, N.J., Williams, B.P. et al.: Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. — Plant J. 69: 47–56, 2012.
Kannan, N.D., Kulandaivelu, G.: Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. — J. Med. Plants Res. 5: 3929–3935, 2011.
Kant, P., Kant, S., Gordon, M., Shaked, R., Barak, S.: STRS1 and STRS2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. — Plant Physiol. 145: 814–830, 2007.
Karaba, A., Dixit, S., Greco, R. et al.: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. — Proc. Natl. Acad. Sci. USA 104: 15270–15275, 2007.
Kawakami, K., Umenab, Y., Kamiyab, N., Shen, J., Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. — Proc. Natl. Acad. Sci. USA 106: 8567–8572, 2009.
Kelly, G.J.: Photosynthesis, carbon metabolism: The Calvin cycle’s golden jubilee. — In: Kelly, G.J., Latzko, E. (ed.): Thirty Years of Photosynthesis 1974–2004. Pp. 382–410, Springer, Heidelberg 2006.
Kempa, S., Krasensky, J., Dal Santo, S. et al.: A central role of abscisic acid in stress-regulated carbohydrate metabolism. — PLoS ONE 3: 3935, 2008.
Khafagy, M.A., Arafa, A.A., El-Banna, M.F.: Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. — Aust. J. Crop Sci. 3: 257–267, 2009.
Khan, M.A., Shirazi, M.U., Khan, M.A. et al.: Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). — Pak. J. Bot. 41: 633–638, 2009.
Kiani, S.P., Grieu, P., Maury, P., Hewezi, T., Gentzbittel, L., Sarrafi, A.: Genetic variability for physiological traits under drought conditions and differential expression of water stress associated genes in sunflower (Helianthus annuus L.). Biomed. — Life Sci. 114: 193–207, 2007.
Kitroongruang, N., Jodo, S., Hisai, J., Kato, M.: Photosynthesis characteristics of melons grown under high temperatures. — J. Japan. Soc. Hort. Sci. 61: 107–114, 1992.
Kogami, H., Shono, M., Koike, T. et al.: Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. — Transgenic Res. 3: 287–296, 1994.
Kohler, B., Blatt, M.R.: Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. — Plant J. 32: 185–194, 2002.
Kossman, J., Sonnewald, U., Willmitzer, L.: Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. — Plant J. 6: 637–650, 1994.
Kozaki, A., Takeba, G.: Photorespiration protects C3 plants from photooxidation. — Nature 384: 557–560, 1996.
Krishnan, H.B., Pueppke, S.G.: Heat shock triggers rapid protein phosphorylation in soybean seedlings. — Biochem. Biophys. Res. Commun. 148: 762–767, 1987.
Ku, M.S.B., Agarie, S., Nomura, M., et al.: High level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. — Nat. Biotechnol. 17: 76–80, 1999.
Kuczyńska, P., Latowski, D., Niczyporuk, S. et al.: Zeaxanthin epoxidation-an in vitro approach. — Acta Biochim. Polonica 59: 105–107, 2012.
Kulshrehtha, S., Mishra, D.P., Gupta, R.K.: Changes in contents of chlorophyll, proteins and lipids in whole chloroplasts and chloroplast membrane fractions at different water potential in drought resistant and sensitive genotypes of wheat. — Photosynthetica 21: 65–70, 1987.
Kumar, A., Li, C., Portis, A.R.J.: Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. — Photosynth. Res. 100: 143–153, 2009.
Kumar, S., Singh, B.: Effect of water stress on carbon isotope discrimination and Rubisco activity in bread and durum wheat genotypes. — Physiol. Mol. Biol. Plants 15: 281–286, 2009.
Kurek, I., Chang, T.K., Bertain, S.M. et al.: Enhanced thermostability of Arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. — Plant Cell 19: 3230–3241, 2007.
Latowski, D., Åkerlund, H.E., Strzalka, K.: Violaxanthin deepoxidase, the xanthophylls cycle enzyme, requires lipid inverted hexagonal structures for its activity. — Biochemistry 43: 4417–4420, 2004.
Lawlor, D.W.: Photosynthesis. 3rd Ed. — Scientific Publishers Limited, Oxford, 2001.
Lawlor, D.W.: Limitation to photosynthesis in water stressed leaves: stomata versus metabolism and the role of ATP. — Ann. Bot. 89: 1–15, 2002.
Lawlor, D.W.: Musings about the effects of environment on photosynthesis. — Ann. Bot. 103: 543–549, 2009.
Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.
Lawlor, D.W., Tezara, W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. — Ann. Bot. 103: 543–549, 2009.
Lee, Y.P., Kim, S.H., Bang, J.W. et al.: Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. — Plant Cell Rep. 26: 591–598, 2007.
Lemeille, S., Rochaix, J.D.: State transitions at the crossroad of thylakoid signalling pathways. — Photosynth. Res. 106: 33–46, 2010.
Levi, A., Ovnat, L., Paterson, A.H., Saranga, Y.: Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. — Plant Sci. 177: 88–96, 2009.
Li, F., Vallabhaneni, R., Yu, J. et al.: The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis and thermal stress tolerance. — Plant Physiol. 147: 1334–1346, 2008.
Li, M., Liu, H., Li, L. et al.: Carbon isotope composition of plants along an altitudinal gradient and its relationship to environmental factors on the Qinghal-Tibet Plateau. — Polish J. Ecol. 55: 67–78, 2007.
Li, T., Zhang, Y., Liu, H. et al.: Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 and salt tolerance in transgenic soybean for over six generations. — Chinese Sci. Bull. 55: 1127–1134, 2010.
Liu, J., Shi, D.C.: Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. — Photosynthetica 48: 127–134, 2010.
Liu, N., Ko, S., Yeh, K.C., Charng, Y.: Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. — Plant Sci. 170: 976–985, 2006.
Liu, X., Wang, Z., Wang, L. et al.: LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. — Plant Sci. 176: 90–98, 2009.
Loreto, F., Centritto, M., Chartzoulakis, K.: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. — Plant Cell Environ. 26: 595–604, 2003.
Los, D.A., Zorina, A., Sinetova, M. et al.: Stress sensors and signal transducers in cyanobacteria. — Sensors 10: 2386–2415, 2010.
Ludlow, M.M., Ng, T.T.: Water stress suspends leaf ageing. — Plant Sci. Lett. 3: 235–240, 1974.
Lundin, B., Thuswaldner, S., Shutova, T. et al.: Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. — Biochim. Biophys. Acta 1767: 500–508, 2007.
Mafakheri, A., Siosemardeh, A., Bahramnejad, B. et al.: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. — Aust. J. Crop Sci. 4: 580–585, 2010.
Makino, A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. — Plant Physiol. 155: 125–129, 2011.
Marques da Silva, J., Arrabica, M.C.: Effect of water stress on Rubisco activity of Setaria sphacelota. — In: Mathis, P. (ed.) Photosynthesis: From Light to Biosphere. Pp. 545–548. Vol. IV. Kluwer, Dordrect — Boston — London 1995.
Matsuoka, M., Furbank, R., Fukayama, H., Miyao, M.: Molecular engineering of C4 photosynthesis. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 297–314, 2001.
Mattana, M., Biazzi, E., Consonni, R. et al.: Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. — Physiol. Plant. 125: 212–223, 2005.
Maxwell, B.B., Andersson, C.R., Poole, D.S. et al.: HY5, Circadian clock-associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression. — Plant Physiol. 133: 1565–1577, 2003.
Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence—a practical guide. — J. Exp. Bot. 50: 659–668, 2000.
Medici, L.O., Azevedo, R.A., Canellas, L.P. et al.: Stomatal conductance of maize under water and nitrogen deficits. — Pesq. Agropec. Bras. 42: 599–601, 2007.
Medrano, H., Escalona, J.M., Bota, J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: the stomatal conductance as a reference parameter. — Ann. Bot. 89: 895–905, 2002.
Medrano, H., Parry, M.A.J., Socias, X., Lawlor, D.W.: Longterm water stress inactivates rubisco in subterranean clover. — Ann. Appl. Biol. 131: 491–501, 1997.
Mehta, P., Jajoo, A., Mathur, S., Bharti, S.: Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. — Plant Physiol. Biochem. 48: 16–20, 2010.
Melcher, K., Ng, L.M., Zhou, X.E. et al.: A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. — Nature 462: 602–608, 2009.
Mittal, S., Kumari, N., Sharma, V.: Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. — Plant Physiol. Biochem. 54: 17–26, 2012.
Misra, A.N., Latowski, D., Strzalka, K.: The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. — Russ. J. Plant Physiol. 53: 113–121, 2006.
Miyao, M.: Molecular evolution and genetic engineering of C4 photosynthetic enzymes. — J. Exp. Bot. 54: 179–189, 2003.
Mizoguchi, T., Irie, K., Hirayama, T. et al.: A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. — Proc. Natl. Acad. Sci. USA 93: 765–769, 1996.
Moghaieb, R.E.A., Tanaka, N., Saneoka, H. et al.: Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabacum): photosynthesis, osmotic adjustment, and nitrogen partitioning. — Plant Cell Environ. 29: 173–182, 2006.
Mohanty, S., Baishna, B.G., Tripathy, C.: Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. — Planta 224: 692–699, 2006.
Monirifar, H., Barghi, M.: Identification and selection for salt tolerance in alfalfa (Medicago sativa L.) ecotypes via physiological traits. — Notulae Sci. Biol. 1: 63–66, 2009.
Moradi, F., Ismail, A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. — Ann. Bot. 99: 1161–1173, 2007.
Moud, A.M., Maghsoudi, K.: Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. — World J. Agr. Sci. 4: 351–358, 2008.
Mumm, P., Wolf, T., Fromm, J. et al.: Cell type-specific regulation of ion channels within the maize stomatal complex. — Plant Cell Physiol. 52: 1365–1375, 2011.
Muranaka, S., Shimizu, K., Kato, M.: A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. — Photosynthetica 40: 509–515, 2002.
Nakagami, H, Pitzschke A, Hirt H.: Emerging MAP kinase pathways in plant stress signalling. — Trends Plant Sci. 10: 339–346, 2005.
Nash, D., Miyao, M., Murata, N.: Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. — Biochim. Biophys. Acta 807: 127–133, 1985.
Neta-Sharir, I., Isaacson, T., Lurie, S., Weissa, D.: Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. — Plant Cell 17: 1829–1838, 2005.
Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. — Plant Cell 9: 1369–1380, 1997.
Noreen, Z., Ashraf, M., Akram, N.A.: Salt-induced modulation in some key gas exchange characteristics and ionic relations in pea (Pisum sativum L.) and their use as selection criteria. — Crop Pasture Sci. 61: 369–378, 2010.
Noreen, Z., Ashraf, M., Akram, N.A.: Salt-induced regulation of photosynthetic capacity and ion accumulation in some genetically diverse cultivars of radish (Raphanus sativus L.). — J. Appl. Bot. Food Qual. 85: 91–96, 2012.
Omoto, E., Taniguchi, M., Miyake, H.: Effects of salinity stress on the structure of bundle sheath and mesophyll chloroplasts in NAD-malic enzyme and PCK type C4 plants. — Plant Prod. Sci. 13: 169–176, 2010.
Pan, J., Lin, S., Woodbury, N.W.: Bacteriochlorophyll excitedstate quenching pathways in bacterial reaction centers with the primary donor oxidized. — J. Phys. Chem. B. 116: 2014–2022, 2012.
Pan, X., Lada, R.R., Caldwell, C.D., Falk, K.C.: Water-stress and N-nutrition effects on photosynthesis and growth of Brassica carinata. — Photosynthetica 49: 309–315, 2011.
Parida, A.K., Dagaonkar, V.S., Phalak, M.S. et al.: Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. — Plant Biotechnol. Rep. 1: 37–48, 2007.
Parida, A.K., Mittra, B., Das, A.B. et al.: High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruguiera parviflora. — Planta 221: 135–140, 2005.
Patra, B., Roy, S., Richter, A., Majumder, A.L.: Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methlated inositol. — Protoplasma 245: 143–152, 2010.
Percival, G.C.: The use of chlorophyll fluorescence to identify chemical and environmental stress in leaf tissue of three oak (Quercus) species. — J. Arboric. 31: 215–227, 2005.
Peri, P., Martinez, P.G., Lencinas, M.V.: Photosynthetic response to different light intensities and water status of two main Nothofagus species of southern Patagonian forest, Argentina. — J. Forest. Sci. 55: 101–111, 2009.
Perveen, S., Shahbaz, M., Ashraf, M.: Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. — Pak. J. Bot. 42: 3073–3081, 2010.
Pettigrew, W., Meredith, J.W.: Leaf gas exchange parameters vary among cotton genotypes. — Crop Sci. 34: 700–705, 1994.
Piao, S., Ciais, P., Friedlingstein, P. et al.: Net carbon dioxide losses of northern ecosystems in response to autumn warming. — Nature 451: 49–52, 2008.
Pinheiro, H.A., Silva, J.V., Endres, L. et al.: Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. — Ind. Crop. Prod. 27: 385–392, 2008.
Pirzad, A., Shakiba, M.R., Zehtab-Salmasi, S. et al.: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. — J. Med. Plants Res. 5: 2483–2488, 2011.
Poetsch, W., Hermans, J., Westhoff, P.: Multiple cDNAs of phosphoenolpyruvate carboxylase in the C4 dicot Flaveria trinervia. — FEBS Lett. 292: 133–136, 1991.
Popovic, R., Dewez, D., Juneau, P.: Application of chlorophyll fluorescence in ecotoxicology: heavy metals, herbicides, and air pollutants. In: DeEll, J.R., Toivonen, P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 151–184. Kluwer Academic Publishers, Boston 2003.
Rahnama, A., Poustini, K., Tavakkol-Afshari, R., Tavakoli, A.: Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. — Int. J. Biol. Life Sci. 6: 216–221, 2010.
Raines, C.A.: Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. — Plant Cell Environ. 29: 331–339, 2006.
Raines, C.A.: Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. — Plant Physiol. 155: 36–42, 2011.
Rawson, H.M., Richards, R.A., Munns, R.: An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. — Aust. J. Agr. Res. 39: 759–772, 1988.
Raza, S.H., Athar, H.R., Ashraf, M.: Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. — Pak. J. Bot. 38: 341–351, 2006.
Raza, S.H., Athar, H.R., Ashraf, M., Hameed, A.: GB-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. — Environ. Exp. Bot. 60: 368–378, 2007.
Reda, F., Mandoura, H.M.H.: Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. — Int. J. Acad. Res. 3: 108–115, 2011.
Rexroth, S., Mullineaux, C.W., Ellinger, D. et al.: The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. — Plant Cell 23: 2379–2390, 2011.
Ristic, Z., Bukovnik, U., Momčilović, I. et al.: Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. — J. Plant Physiol. 165: 192–202, 2008.
Robinson, S.P., Downton, W.J.S., Millhouse, J.A.: Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. — Plant Physiol. 73: 238–242, 1983.
Rogers, M.E., Noble, C.L.: Variation in growth and ion accumulation between two selected populations of Trifolium repens L. differing in salt tolerance. — Plant Soil 146: 131–136, 1992.
Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.
Rokka, A., Aro, E.M., Herrmann, R.G. et al.: Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. — Plant Physiol. 123: 1525–1536, 2000.
Romero, L., Belakbir, A., Ragala, L., Ruiz, J.M.: Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). — Soil Sci. Plant Nutr. 43: 855–862, 1997.
Ruan, C., Shao, H., da Silva, J.A.T.: A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. — Crit. Rev. Biotechnol. 32: 1–21, 2012.
Ruban, A.V., Horton, P.: Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. — Aust. J. Plant Physiol. 22: 221–230, 1995.
Ruban, A.V., Pascal, A.A., Robert, B., Horton, P.: Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. — J. Biol. Chem. 277: 7785–7789, 2002.
Sabir, P., Ashraf, M., Hussain, M., Jamil, A.: Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. — Pak. J. Bot. 41: 2957–2964, 2009.
Sade, N., Gebretsadik, M., Seligmann, R. et al.: The role of tobacco aquaporin in improving water use efficiency, hydraulic conductivity and yield production under salt stress. — Plant Physiol. 152: 245–254, 2010.
Sage, R.F., Zhu, X.L.: Exploiting the engine of C4 photosynthesis. — J. Exp. Bot. 62: 2989–3000, 2011.
Saibo, N.J.M., Lourenço, T., Oliveira, M.M.: Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. — Ann. Bot. 103: 609–623, 2009.
Sairam, R.K., Rao, V.K., Srivastava, G.C.: Differential response of wheat genotype to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. — Plant Sci. 163: 1037–1046, 2002.
Sakamoto, A., Murata, N.: The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. — Plant Cell Environ. 25: 163–171, 2002.
Saleem, A., Ashraf, M., Akram, N.A.: Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). — J. Agron. Crop Sci. 197: 202–213, 2011.
Salvucci, M.E., Crafts-Brandner, S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. — Plant Physiol. 134: 1460–1470, 2004.
Santos, C., Azevedo H., Caldeira, G.: In situ and in vitro senescence induced by KCI stress: nutritional imbalance, lipid peroxidatin and antioxidant metabolism. — J. Exp. Bot. 52: 351–360, 2001.
Santos, C., Caldeira, G.: Comparative responses of Helianthus annuus plants and calli exposed to NaCl: I. Growth rate and osmotic regulation in intact plants and calli. — J. Plant Physiol. 155: 769–777, 1999.
Santos, C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. — Sci. Hort. 103: 93–99, 2004.
Saravanavel, R., Ranganathan, R., Anantharaman, P.: Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. — Recent Res. Sci. Technol. 3: 177–180, 2011.
Sausen, T.L., Rosa, L.M.G.: Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions. — Acta Bot. Bras. 24: 648–654, 2010.
Schaeffer, H.J., Forsthoefel, N.R., Cushman, J.C.: Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. — Plant Mol. Biol. 28: 205–218, 1995.
Schrader, S.M., Wise, R.R., Wacholtz, W.F. et al.: Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. — Plant Cell Environ. 27: 725–735, 2004.
Seemann, J.R., Critchley, C.: Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt sensitive species. Phaseolus vulgaris L. — Plant Physiol. 82: 555–560, 1985.
Seemann, J.R., Sharkey, T.D.: The effect of abscisic acid and other inhibitors on photosynthetic capacity and the biochemistry of CO2 assimilation. — Plant Physiol. 84: 696–700, 1982.
Shahbaz, M., Ashraf, M.: Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. — Pak. J. Bot. 39: 513–522, 2007.
Sharkey, T.D.: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. — Plant Cell Environ. 28: 269–277, 2005.
Sharkey, T.D., Zhang, R.: High temperature effects on electron and proton circuits of photosynthesis. — J. Integr. Plant Biol. 52: 712–722, 2010.
Shou, H., Bordallo, P., Wang, K.: Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. — J. Exp. Bot. 55: 1013–1019, 2004.
Sikuku, P.A., Netondo, G.W., Onyango, J.C., Musyimi, D.M.: Chlorophyll fluorescence, protein and chlorophyll content of three NERICA rainfed rice varieties under varying irrigation regimes. — ARPN J. Agr. Biol. Sci. 5: 19–25, 2010.
Singh, C.R., Curtis, C., Yamamoto, Y. et al.: eIF5 is critical for the integrity of the scanning preinitiation complex and accurate control of GCN4 translation. — Mol. Cell Biol. 25: 5480–5491, 2005.
Skotnica, J., Matoušková, M., Nauš, J. et al.: Thermoluminescence and fluorescence study of changes in photosystem II photochemistry in desiccating barley leaves. — Photosynth. Res. 65: 29–40, 2000.
Smith, K.A., Ardelt, B.K., Huner, N.P.A. et al.: Identification and partial characterization of the denaturation transition of the light harvesting complex-II of spinach chloroplast membranes. — Plant Physiol. 90: 492–499, 1989.
Smith, K.A., Low, P.S.: Identification and partial characterization of the denaturation transition of the photosystem-II reaction centre of spinach chloroplast membranes. — Plant Physiol. 90: 575–581, 1989.
Sohn, S.O., Back, K.: Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. — Biol. Plant. 51: 340–342, 2007.
Srivastava, S., Fristensky, B., Kav, N.N.V.: Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. — Plant Cell Physiol. 45: 1320–1324, 2004.
Taiz, L., Zeiger, E.: Plant Physiology. 5th Ed. Sinauer Associates, Sunderland 2010.
Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M., Honda, H.: Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. — Planta 211: 265–274, 2000.
Tanaka, Y., Sano, T., Tamaoki, M. et al.: Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. — Plant Physiol. 138: 2337–2343, 2005.
Tang, D., Qian, H., Zhao, L. et al.: Transgenic tobacco plants expressing BoRS1 gene from Brassica oleracea var. acephala show enhanced tolerance to water stress. — J. Biosci. 30: 647–655, 2005.
Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z., Lu, C.: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. — Plant Physiol. 143: 629–638, 2007.
Taub, D.: Effects of rising atmospheric concentrations of carbon dioxide on plants. — Nature Educ. Knowl. 1: 21, 2010.
Tavakoli, H., Mohtasebi, S.S.M., Jafari, A., Galedar, M.N.: Some engineering properties of barley straw. — Appl. Eng. Agr. 25: 627–633, 2009.
Tayefi-Nasrabadi, H., Dehghan, G., Daeihassani, B. et al.: Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L.) cultivars. — Afr. J. Biotechnol. 10: 751–763, 2011.
Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J., Hirt, H.: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. — Mol. Cell 15: 141–152, 2004.
Tewari, A.K., Tripathy, B.C.: Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. — Plant Physiol. 117: 851–858, 1998.
Tewari, A.K., Tripathy, B.C.: Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). — Planta 208: 431–437, 1999.
Thornton, M.K., Malik, N.J., Dwelle, R.B.: Relationship between leaf gas exchange characteristics and productivity of potato clones grown at different temperatures. — Amer. Potato J. 73: 63–77, 1996.
Toth, S., Nagy, V., Puthur, J.T. et al.: The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. — Plant Physiol. 156: 382–392, 2011.
Tsuchida, H., Tamai, T., Fukayama, H. et al.: High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. — Plant Cell Physiol. 42: 138–145, 2001.
Van Camp, W., Capiau, K., Van Montagu, M., Inzé, D., Slooten, L.: Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. — Plant Physiol. 112: 1703–1714, 1996.
Van Rensburg, L., Krüger, G.H.J., Eggenberg, P., Strasser, R.J.: Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? — S. Afr. J. Bot. 62: 337–341, 1996.
Várkonyi, Z., Nagy, G., Lambrev, P. et al.: Effect of phosphorylation on the thermal and light stability of the thylakoid membranes. — Photosynth. Res. 99: 161–171, 2009.
Vaz, J., Sharma, P.K.: Relationship between xanthophy cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. — Indian J. Exp. Bot. 49: 60–67, 2011.
Veiga, T.A.M., Silva, S.O.C.: Inhibition of photophosphorylation and electron transport chain in thylakoids by lasiodiplodin, a natural product from Botryosphaeria rhodina. — J. Agr. Food Chem. 55: 4217–4221, 2007.
Velikova, V., Sharkey, T.D., Loreto, F.: Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. — Plant Signal. Behav. 7: 139–141, 2012.
Vener, A.V., Rokka, A., Fulgosi, H., Andersson, B., Herrmann, R.G.: A cyclophilin regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. — Biochemistry 38: 14955–14965, 1999.
Verma, S., Mishra, S.N.: Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. — J. Plant Physiol. 162: 669–677, 2005.
von Caemmerer, S., Farquhar, G.D.: Effects of partial defoliation, changes of irradiance during growth at enhanced p(CO2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L. — Planta 160: 320–329, 1984.
Walker, D.: Fluorescence. — In: Walker, D. (ed.): The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. Pp. 17–46. Oxgraphics, Univ. Sheffield, Sheffield 1987.
Wang, D., Portis, A.R. Jr.: A novel nucleus-encoded chloroplast protein, PIFI, is involved in NAD(P) H dehydrogenase complex-mediated chlororespiratory electron transport in Arabidopsis. — Plant Physiol. 144: 1742–1752, 2007.
Wang, L.J., Fan, L., Loescher, W. et al.: Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. — BMC Plant Biol. 10: 34–44, 2010.
Wang, W-H., Yi, X-Q., Han, A-D. et al.: Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. — J. Exp. Bot. 63: 177–190, 2012.
Whitmarsh, A.J., Davis, R.J.: Regulation of transcription factor function by phosphorylation. — Cell. Mol. Life Sci. 57: 1172–1183, 2000.
Winicov, I., Seemann, J.R.: Expression of genes for photosynthesis and the relationship to salt tolerance of alfalfa (Medicago sativa) cells. — Plant Cell Physiol. 31: 1155–1161, 1990.
Wu, Q.S., Zou, N.Y.: Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. — Not. Bot. Hort. Agrobot. Cluj. 37: 133–138, 2009.
Wu, X.X., Ding, H., Chen, J. et al.: Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. — Afr. J. Biotechnol. 9: 7837–7846, 2010.
Xie, X.J., Shen, S.H.H., Li, Y.X. et al.: Effect of photosynthetic characteristic and dry matter accumulation of rice under high temperature at heading stage. — Afr. J. Agr. Res. 6: 1931–1940, 2011.
Xu, Q.Z., Huang, B.R.: Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. — Crop Sci. 41: 127–133, 2001.
Xu, W., Zhou, Y., Chollet, R.: Identification and expression of a soybean nodule-enhanced PEP-carboxylase kinase gene (NEPpcK) that shows striking up-/down-regulation in vivo. — Plant J. 34: 441–452, 2003.
Xu, X.X., Shao, H.B., Ma, Y.Y. et al.: Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. — Crit. Rev. Biotechnol. 30: 222–230, 2010.
Xu, Z., Zhou, G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. — J. Exp. Bot. 59: 3317–3325, 2008.
Xue, G.P., McIntyre, C.L., Glassop, D., Shorter, R.: Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. — Plant Mol. Biol. 67: 197–214, 2008.
Yan, J., He, C., Wang, J. et al.: Overexpression of the Arabidopsis 14-3-3 protein GF14 in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. — Plant Cell Physiol. 45: 1007–1014, 2004.
Yan, K., Chen, P., Shao, H. et al.: Effects of short-term high temperature on photosynthesis and photosystem II performance in Sorghum. — J. Agron. Crop Sci. 97: 400–408, 2011.
Yanagisawa, S., Sheen, J.: Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. — Plant Cell 10: 75–89, 1998.
Yang, J.Y., Zheng, W., Tian, Y. et al.: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. — Photosynthetica 49: 275–284, 2011.
Yang, X., Liang, Z., Lu, C.: Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. — Plant Physiol. 138: 2299–2309, 2005.
Yildiz, M., Terzi, H.: Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. — Biologia 63: 521–525, 2008.
Yu, H., Chena, X., Hong, Y.Y. et al.: Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. — Plant Cell 20: 1134–1151, 2008.
Zeid, I.M.: Trehalose as osmoprotectant for maize under salinity-induced stress research. — J. Agr. Biol. Sci. 5: 613–622, 2009.
Zhang, H.X., Hodson, J.N., Williams, J.P., Blumwald, E.: Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. — Proc. Natl. Acad. Sci. USA 98: 12832–12836, 2001.
Zhang, J., Jia, W., Yang, J., Ismail, A.M.: Role of ABA in integrating plant responses to drought and salt stresses. — Field Crops Res. 97: 111–119, 2006.
Zhang, L., Zhang, Z., Gao, H. et al.: Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. — Physiol. Plant. 143: 396–407, 2011.
Zhang, S., Klessig, D.F.: MAPK cascades in plant defense signaling. — Trends Plant Sci. 6: 520–527, 2001.
Zhang, X., Wollenweber, B., Jiang, D. et al.: Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP 9, a bZIP transcription factor. — J. Exp. Bot. 59: 839–848, 2008.
Zhao, J., Guo, S., Chen, S. et al.: Expression of yeast YAP1 in transgenic Arabidopsis results in increased salt tolerance. — J. Plant Biol. 52: 56–64, 2009a.
Zhao, X., Tan, H.J., Liu, B. et al.: Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. — Plant Cell Tiss. Organ Cult. 98: 97–103, 2009b.
Zhu, B., Xiong, A.S., Peng, R.H. et al.: Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. — BMB Rep. 41: 382–387, 2008.
Ziaf, K., Amjad, M., Pervez, M.A. et al.: Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). — Pak. J. Bot. 41: 1797–1809, 2009.
Zlatev, Z.: Drought-induced changes in chlorophyll fluorescence of young wheat plant. — Biotechnology 23: 437–441, 2009.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ashraf, M., Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190 (2013). https://doi.org/10.1007/s11099-013-0021-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11099-013-0021-6
Additional key words
- drought
- fluorescence
- gas exchange
- heat
- photosynthesis
- photosynthetic pigments
- salinity, salinity stress