Skip to main content

Advertisement

Log in

Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants

  • Published:
Photosynthetica

Abstract

The hypothesis that application of exogenous glycine betaine (GBEX) may attenuate the effects of mild water deficit in leaf gas exchange and lipid peroxidation in Carapa guianensis was examined. For this reason, 110-d old plants were sprayed with 0, 25, and 50 mM GBEX and then subjected to two watering regimes. In the first, irrigation was continuously performed to maintain the soil near to field capacity (watered plants). In the second, irrigation was withheld and water deficit resulted from progressive evapotranspiration (water-stressed plants). Treatment comparisons were assessed when predawn leaflet water potential (Ψpd) of stressed plants reached −1.28 ± 0.34 MPa. Regardless of the watering regime, significant (P<0.05) increases in foliar glycine betaine (GBLeaf) concentration were observed in response to increasing GBEX; however, such increases were more expressive in stressed plants. The net photosynthetic rate, stomatal conductance to water vapor, and intercellular to ambient CO2 concentration ratio were significantly lower in water-stressed plants independently of GBEX concentration sprayed on leaves. The application of 25 and 50 mM GBEX caused significant (P<0.05) increases in ascorbate peroxidase (APX) activity in stressed plants, while significant (P<0.05) increases in catalase activity was observed just in the stressed plants treated with 50 mM GBEX. Malondialdehyde concentrations did not differ between watered and stressed plants regardless of GBEX concentration. In conclusion, C. guianensis was able to incorporate GBEX through their leaves and the resulting increases in GBLeaf attenuated lipid peroxidation in stressed plants through positive modulation of APX and CAT activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

C i/C a :

intercellular to ambient CO2 concentration ratio

DM:

dry mass

GBEX :

exogenous glycine betaine

GBLeaf :

foliar glycine betaine

g s :

stomatal conductance to water vapor

MDA:

malondialdehyde

P N :

net photosynthetic rate

PAR:

photosynthetically active radiation

ROS:

reactive oxygen species

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

Ψpd :

predawn leaflet water potential

References

  • Agboma, M., Jones, M.G.K., Peltonen-Sainio, P. et al.: Exogenous glycine betaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes. — J. Agron. Crop Sci. 178: 29–37, 1997.

    Article  CAS  Google Scholar 

  • Allard, F., Houde, M., Krol, M. et al.: Betaine improves freezing tolerance in wheat. — Plant Cell Physiol. 39: 1194–1202, 1998.

    Article  CAS  Google Scholar 

  • Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Brando, P.M., Goetz, S.J., Baccini, A. et al.: Seasonal and interannual variability of climate and vegetation indices across the Amazon. — Proc. Nat. Acad. Sci. USA 107: 14685–14690, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Brasil, E.C., Cravo, M.S.: [Interpretation of soil analysis results] — In: Cravo, M.S., Viégas, I.J.M., Brasil, E.C. (ed.): [Fertilizing and Liming Recommendations for the State of Pará, Brazil] Pp. 43–47. Embrapa Amazônia Oriental, Belém 2007. [In Port.]

    Google Scholar 

  • Cakmak, I., Horst, J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). — Physiol. Plant. 83: 463–468, 1991.

    Article  CAS  Google Scholar 

  • Chen, T.H.H., Murata, N.: Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. — Plant Cell Environ. 34: 1–20, 2011.

    Article  PubMed  Google Scholar 

  • Costa, M.A., Pinheiro, H.A., Shimizu, E.S.C. et al.: Lipid peroxidation, chloroplastic pigments and antioxidant strategies in Carapa guianensis (Aubl.) subjected to water-deficit and short-term rewetting. — Trees 24: 275–283, 2010.

    Article  CAS  Google Scholar 

  • Demiral, T., Türkan, I.: Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment ? — J. Plant Physiol. 161: 1089–1100, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Farooq, M., Basra, S.M.A., Wahid, A. et al.: Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). — J. Agron. Crop Sci. 194: 325–333, 2008.

    Article  CAS  Google Scholar 

  • Genard, H., Le Saos, J., Hillard, J. et al.: Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritime. — Plant Physiol. Biochem. 29: 421–427, 1991.

    CAS  Google Scholar 

  • Gonçalves, J.F.C., Silva, C.E.M., Guimarães, D.G.: [Photosynthesis and water potential of andiroba seedlings submitted to water stress and rewetting.] — Pesq. Agropec. Bras. 44: 8–14, 2009. [In Port.]

    Article  Google Scholar 

  • Grieve, C.M., Grattan, S.R.: Rapid assay for determination of water soluble quaternary ammonium compounds. — Plant Soil 70: 303–307, 1983.

    Article  CAS  Google Scholar 

  • Hassine, A.B., Ghanem, M.E., Bouzid, S., Lutts, S.: An inland and a coastal population of the Mediterranean xerohalophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. — J. Exp. Bot. 59: 1315–1326, 2008.

    Article  PubMed  Google Scholar 

  • Hattori, T., Mitsuya, S., Fujiwara, T. et al.: Tissue specificity of glycinebetaine synthesis in barley. — Plant Sci. 176: 112–118, 2009.

    Article  CAS  Google Scholar 

  • Havir, E.A., McHale, N.A.: Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. — Plant Physiol. 84: 450–455, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal, N., Ashraf, M., Ashraf, M.Y.: Glycinebetaine, an osmolyte of interest to improve water stress tolerance in sunflower (Helianthus annuus L.): water relations and yield. — S. Afr. J. Bot. 74: 274–281, 2008.

    Article  CAS  Google Scholar 

  • Lv, S., Yang, A., Zhang, K. et al.: Increase of glycinebetaine synthesis improves drought tolerance in cotton. — Mol. Breeding 20: 233–248, 2007.

    Article  CAS  Google Scholar 

  • Ma, Q.-Q., Wang, W., Li, Y.-H. et al.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. — J. Plant Physiol. 163: 165–175, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X.L., Wang, Y.J., Xie, S.L. et al.: Glycinebetaine application ameliorates negative effects of drought stress in tobacco. — Russ. J. Plant Physiol. 54: 472–479, 2007.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F.: Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. — Plant Physiol. Biochem. 36: 767–772, 1998.

    Article  CAS  Google Scholar 

  • Meloni, D.A., Martínez, C.A.: Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings. — Braz. J. Plant Physiol. 21: 233–241, 2009.

    Google Scholar 

  • Mendonça, A.P., Ferraz, I.D.K.: [Crapwood oil: traditional extraction, use and social aspects in the state of Amazonas, Brasil.] — Acta Amaz. 37: 353–364, 2007. [In Port.]

    Article  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 9: 405–410, 2002.

    Article  Google Scholar 

  • Moraes F.K.C., Castro, G.L.S., Silva Júnior, D.D. et al.: Chloroplastidic pigments, gas exchange, and carbohydrates changes during Carapa guianensis leaflet expansion. — Photosynthetica 49: 619–626, 2011.

    Article  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach choloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nawaz, K., Ashraf, M.: Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subject to salt stress. — J. Agron. Crop Sci. 196: 28–37, 2010.

    Article  CAS  Google Scholar 

  • Nuccio, M.L., Russell, B.L., Nolte, K.D. et al.: The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. — Plant J. 16: 487–496, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Park, E.-J., Jeknić, Z., Chen, T.H.H.: Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. — Plant Cell Physiol. 47: 706–714, 2006.

    Article  PubMed  Google Scholar 

  • Pimentel, C.: [Water relations in two hybrids of corn under two cycles of water stress.] — Pesq. Agropec. Bras. 34: 2021–2027, 1999. [In Port.]

    Article  Google Scholar 

  • Quan, R., Shang, M., Zhang, H. et al.: Engineering of enhanced glycinebetaine synthesis improves drought tolerance in maize. — Plant Biotechnol. J. 2: 477–486, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Raza, S.H., Athar, H.R., Ashraf, M., Hameed, A.: Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. — Environ. Exp. Bot. 60: 368–376, 2007.

    Article  CAS  Google Scholar 

  • Rhodes, D., Rich, P.J., Brunk, D.G. et al.: Development of two isogenic sweet corn hybrids differing for glycinebetaine content. — Plant Physiol. 91: 1112–1121, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S.P., Jones, G.P.: Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. — Aust. J. Plant Physiol. 13: 659–668, 1986.

    Article  CAS  Google Scholar 

  • Sakamoto, A., Murata, N.: The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. — Plant Cell Environ. 25: 163–171, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Takabe, T., Rai, V., Hibino, T.: Metabolic engineering of glycinebetaine — In: Rai, A., Takabe, T. (ed.): Abiotic Stress Tolerance in Plants: Towards the Improvements of Global Environmental and Food. Pp. 137–151. Springer, Dordrecht 2006.

    Chapter  Google Scholar 

  • Wang, G.P., Li, F., Zhang, J. et al.: Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. — Photosynthetica 48: 30–41, 2010.

    Article  CAS  Google Scholar 

  • Weibing, X., Rajashekar, C.B.: Alleviation of water stress in beans by exogenous glycine betaine. — Plant Sci. 148: 185–192, 1999.

    Article  Google Scholar 

  • Yang, X., Lu, C.: Effects of exogenous glycinebetaine on growth, CO2 assimilation and photosystem II photochemistry of maize plants. — Physiol. Plant. 127: 593–602, 2006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Pinheiro.

Additional information

Acknowledgements: Scholarships were granted by “Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq” (F.J.R. Cruz, D.D. Silva Júnior, and G.L.S. Castro).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, F.J.R., Castro, G.L.S., Silva Júnior, D.D. et al. Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants. Photosynthetica 51, 102–108 (2013). https://doi.org/10.1007/s11099-013-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0004-7

Additional key words

Navigation