Skip to main content

Juvenile tank-bromeliads lacking tanks: do they engage in CAM photosynthesis?

Abstract

In the epiphytic tillandsioids, Guzmania monostachia, Werauhia sanguinolenta, and Guzmania lingulata (Bromeliaceae), juvenile plants exhibit an atmospheric habit, whereas in adult plants the leaf bases overlap and form water-holding tanks. CO2 gas-exchange measurements of the whole, intact plants and δ13C values of mature leaves demonstrated that C3 photosynthesis was the principal pathway of CO2 assimilation in juveniles and adults of all three species. Nonetheless, irrespective of plant size, all three species were able to display features of facultative CAM when exposed to drought stress. The capacity for CAM was the greatest in G. monostachia, allowing drought-stressed juvenile and adult plants to exhibit net CO2 uptake at night. CAM expression was markedly lower in W. sanguinolenta, and minimal in G. lingulata. In both species, low-level CAM merely sufficed to reduce nocturnal respiratory net loss of CO2. δ13C values were generally less negative in juveniles than in adult plants, probably indicating increased diffusional limitation of CO2 uptake in juveniles.

This is a preview of subscription content, access via your institution.

Abbreviations

CAM:

crassulacean acid metabolism

DM:

dry mass

FM:

fresh mass

PFD:

photon flux density (400–700 nm)

RH:

relative humidity

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

STRI:

Smithsonian Tropical Research Institute

VPD:

leaf-air water vapour pressure difference

References

  • Abràmoff, M.D., Magelhães, P.J., Ram, S.J.: Image processing with ImageJ. — Biophot. Int. 11: 36–42, 2004.

    Google Scholar 

  • Adams, W.W.III, Martin, C.E.: Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). — Oecologia 70: 298–304, 1986a.

    Article  Google Scholar 

  • Adams, W.W.III, Martin, C.E.: Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). — Amer. J. Bot. 73: 1207–1214, 1986b.

    Article  Google Scholar 

  • Benzing, D.H.: Bromeliaceae — Profile of an Adaptive Radiation. — Cambridge Univ. Press, Cambridge 2000.

    Chapter  Google Scholar 

  • Cernusak, L.A., Winter, K., Aranda, J. et al.: Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility. — J. Exp. Bot. 58: 3549–3566, 2007.

    PubMed  Article  CAS  Google Scholar 

  • Cernusak, L.A., Winter, K., Aranda, J., Turner, B.L.: Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ13C and δ18O) of seedlings grown in a tropical environment. — Plant Physiol. 148: 642–659, 2008.

    PubMed  Article  CAS  Google Scholar 

  • Crayn, D.M., Winter, K., Smith, J.A.C.: Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. — Proc. Nat. Acad. Sci. USA 101: 3703–3708, 2004.

    PubMed  Article  CAS  Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537, 1989.

    Article  CAS  Google Scholar 

  • Givnish, T.J., Barfuss, M.H.J., Van Ee, B. et al.: Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. — Amer. J. Bot. 98: 872–895, 2011.

    Article  Google Scholar 

  • Goldstein, G., Andrade, J.L., Nobel, P.S.: Differences in water relations parameters for the chlorenchyma and the parenchyma of Opuntia ficus-indica under wet versus dry conditions. — Aust. J. Plant Physiol. 18: 95–107, 1991.

    Article  Google Scholar 

  • Griffiths, H., Lüttge, U., Stimmel, K.H. et al.: Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. — Plant Cell Environ. 9: 385–393, 1986.

    Article  Google Scholar 

  • Griffiths, H., Maxwell, K.: In memory of C.S. Pittendrigh: does exposure in forest canopies relate to photoprotective strategies in epiphytic bromeliads. — Functional Ecology 13: 15–23, 1999.

    Article  Google Scholar 

  • Griffiths, H., Smith, J.A.C.: Photosynthetic pathways in the Bromeliaceae of Trinidad: relation between life forms, habitat preference and occurrence of CAM. — Oecologia 60: 176–184, 1983.

    Article  Google Scholar 

  • Holtum, J.A.M., Smith, J.A.C., Neuhaus, H.E.: Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. — Funct. Plant Biol. 32: 429–449, 2005.

    Article  CAS  Google Scholar 

  • Holtum, J.A.M., Winter, K.: Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. — Aust. J. Plant Physiol. 26: 749–757, 1999.

    Article  CAS  Google Scholar 

  • Holtum, J.A.M., Winter, K.: Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. — Trees 19: 545–561, 2005.

    Article  CAS  Google Scholar 

  • Holtum, J.A.M., Winter, K.: Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2. — Planta 218: 152–158, 2003.

    PubMed  Article  CAS  Google Scholar 

  • Lüttge, U., Klauke, B., Griffiths, H. et al.: Comparative ecophysiology of CAM and C3 bromeliads. V. Gas exchange and leaf structure of the C3 bromeliad Pitcairnia integrifolia. — Plant Cell Environ. 9: 411–419, 1986b.

    Article  Google Scholar 

  • Lüttge, U., Stimmel, K.-H., Smith, J.A.C., Griffiths, H.: Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. — Plant Cell Environ. 9: 377–383, 1986a.

    Article  Google Scholar 

  • Maxwell, K.: Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. — Funct. Plant Biol. 29: 679–687, 2002.

    Article  CAS  Google Scholar 

  • Maxwell, C., Griffiths, H., Borland, A.M. et al.: Photoinhibitory responses of the epiphytic bromelioid Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. — Plant Cell Environ. 15: 37–47, 1992.

    Article  Google Scholar 

  • Maxwell, C., Griffiths, H., Young, A.J.: Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. — Funct. Ecol. 8: 745–754, 1994.

    Article  Google Scholar 

  • Medina, E., Delgado, M., Troughton, J.H., Medina, J.D.: Physiological ecology of CO2 fixation in Bromeliaceae. — Flora 166: 137–152, 1977.

    CAS  Google Scholar 

  • Medina, E., Minchin, P.: Stratification of δ13C values in Amazonian rain forests. — Oecologia 45: 377–378, 1980.

    Article  Google Scholar 

  • Mez, C.: [Physiological studies on Bromeliaceae. I. The water economy of extremely atmospheric tillandsias.] — Jahr. Wiss. Bot. 40: 157–229, 1904. [In German]

    Google Scholar 

  • Osmond, C.B.: Crassulacean acid metabolism: a curiosity in context. — Annu. Rev. Plant Physiol. 29: 379–414, 1978.

    Article  CAS  Google Scholar 

  • Pierce, S., Maxwell, K., Griffiths, H., Winter, K.: Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. — Amer. J. Bot. 88: 1371–1389, 2001.

    Article  CAS  Google Scholar 

  • Pierce, S., Winter, K., Griffiths, H.: Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. — New Phytol. 156: 75–83, 2002.

    Article  CAS  Google Scholar 

  • R Development Core Team: A language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna 2011.

    Google Scholar 

  • Schmidt, G., Zotz, G.: Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. — Plant Cell Environ. 24: 101–111, 2001.

    Article  Google Scholar 

  • Schmidt, J.E., Kaiser, W.M.: Response of the succulent leaves of Peperomia magnoliaefolia to dehydration: water relations and solute movement in chlorenchyma and hydrenchyma. — Plant Physiol. 83: 190–194, 1987.

    PubMed  Article  CAS  Google Scholar 

  • Smith, J.A.C., Griffiths, H., Bassett, M., Griffiths, N.M.: Daynight changes in the leaf water relations of epiphytic bromeliads in the rain forests of Trinidad. — Oecologia 67: 475–485, 1985.

    Article  Google Scholar 

  • Smith, J.A.C., Griffiths, H., Lüttge, U.: Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeliaceae in Trinidad. — Plant Cell Environ. 9: 359–376, 1986.

    Article  Google Scholar 

  • Silvera, K., Santiago, L.S., Winter, K.: Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. — Funct. Plant Biol. 32: 397–407, 2005.

    Article  CAS  Google Scholar 

  • Tomlinson, P.B.: Monocotyledons — towards an understanding of their morphology and anatomy. — Adv. Bot. Res. 3: 207–292, 1970.

    Article  Google Scholar 

  • West-Eberhard, M.J., Smith, J.A.C., Winter, K.: Photosynthesis, reorganized. — Science 332: 311–312, 2011.

    PubMed  Article  CAS  Google Scholar 

  • Winter, K., Aranda, J.E., Holtum, J.A.M.: Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. — Funct. Plant Biol. 32: 381–388, 2005.

    Article  CAS  Google Scholar 

  • Winter, K., Garcia, M., Holtum, J.A.M.: On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. — J. Exp. Bot. 59: 1829–1840, 2008.

    PubMed  Article  CAS  Google Scholar 

  • Winter, K., Garcia, M., Holtum, J.A.M.: Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode. — J. Exp. Bot. 62: 4037–4042, 2011.

    PubMed  Article  CAS  Google Scholar 

  • Winter, K., Holtum, J.A.M.: How closely do the ·13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? — Plant Physiol. 129: 1843–1851, 2002.

    PubMed  Article  CAS  Google Scholar 

  • Winter, K., Holtum, J.A.M.: Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. — Plant Physiol. 143: 98–107, 2007.

    PubMed  Article  CAS  Google Scholar 

  • Winter, K., Holtum, J.A.M.: Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. — Funct. Plant Biol. 38: 576–582, 2011.

    Article  CAS  Google Scholar 

  • Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. — Ecological Studies, Vol. 114. Springer, Berlin — Heidelberg — New York 1996.

  • Zotz, G., Enslin, A., Hartung, W., Ziegler, H.: Physiological and anatomical changes during the early ontogeny of the heteroblastic bromeliad, Vriesea sanguinolenta, do not concur with the morphological change from atmospheric to tank form. — Plant Cell Environ. 27: 1341–1350, 2004.

    Article  Google Scholar 

  • Zotz, G., Harris, G.K., Königer, M., Winter K.: High rates of photosynthesis in the tropical pioneer tree, Ficus insipida Willd. — Flora 190: 265–272, 1995.

    Google Scholar 

  • Zotz, G., Wilhelm, K., Becker, A.: Heteroblasty—A review. — Bot. Rev. 77: 109–151, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Winter.

Additional information

Acknowledgements: J.D.B. was recipient of a short-term fellowship from the Smithsonian Tropical Research Institute and received travel support from the Facultad de Ciencias, Universidad de los Andes. Dayana Agudo performed the δ13C analyses, Jorge Ceballos helped with microscopy, and Oris Acevedo provided logistical support on Barro Colorado Nature Monument.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beltrán, J.D., Lasso, E., Madriñán, S. et al. Juvenile tank-bromeliads lacking tanks: do they engage in CAM photosynthesis?. Photosynthetica 51, 55–62 (2013). https://doi.org/10.1007/s11099-012-0077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0077-8

Additional key words

  • bromeliads
  • CO2 exchange
  • carbon isotope discrimination
  • crassulacean acid metabolism
  • drought stress
  • Guzmania
  • heteroblasty
  • photosynthesis
  • Werauhia