Abràmoff, M.D., Magelhães, P.J., Ram, S.J.: Image processing with ImageJ. — Biophot. Int. 11: 36–42, 2004.
Google Scholar
Adams, W.W.III, Martin, C.E.: Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). — Oecologia 70: 298–304, 1986a.
Article
Google Scholar
Adams, W.W.III, Martin, C.E.: Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). — Amer. J. Bot. 73: 1207–1214, 1986b.
Article
Google Scholar
Benzing, D.H.: Bromeliaceae — Profile of an Adaptive Radiation. — Cambridge Univ. Press, Cambridge 2000.
Chapter
Google Scholar
Cernusak, L.A., Winter, K., Aranda, J. et al.: Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility. — J. Exp. Bot. 58: 3549–3566, 2007.
PubMed
Article
CAS
Google Scholar
Cernusak, L.A., Winter, K., Aranda, J., Turner, B.L.: Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ13C and δ18O) of seedlings grown in a tropical environment. — Plant Physiol. 148: 642–659, 2008.
PubMed
Article
CAS
Google Scholar
Crayn, D.M., Winter, K., Smith, J.A.C.: Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. — Proc. Nat. Acad. Sci. USA 101: 3703–3708, 2004.
PubMed
Article
CAS
Google Scholar
Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537, 1989.
Article
CAS
Google Scholar
Givnish, T.J., Barfuss, M.H.J., Van Ee, B. et al.: Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. — Amer. J. Bot. 98: 872–895, 2011.
Article
Google Scholar
Goldstein, G., Andrade, J.L., Nobel, P.S.: Differences in water relations parameters for the chlorenchyma and the parenchyma of Opuntia ficus-indica under wet versus dry conditions. — Aust. J. Plant Physiol. 18: 95–107, 1991.
Article
Google Scholar
Griffiths, H., Lüttge, U., Stimmel, K.H. et al.: Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. — Plant Cell Environ. 9: 385–393, 1986.
Article
Google Scholar
Griffiths, H., Maxwell, K.: In memory of C.S. Pittendrigh: does exposure in forest canopies relate to photoprotective strategies in epiphytic bromeliads. — Functional Ecology 13: 15–23, 1999.
Article
Google Scholar
Griffiths, H., Smith, J.A.C.: Photosynthetic pathways in the Bromeliaceae of Trinidad: relation between life forms, habitat preference and occurrence of CAM. — Oecologia 60: 176–184, 1983.
Article
Google Scholar
Holtum, J.A.M., Smith, J.A.C., Neuhaus, H.E.: Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. — Funct. Plant Biol. 32: 429–449, 2005.
Article
CAS
Google Scholar
Holtum, J.A.M., Winter, K.: Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. — Aust. J. Plant Physiol. 26: 749–757, 1999.
Article
CAS
Google Scholar
Holtum, J.A.M., Winter, K.: Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. — Trees 19: 545–561, 2005.
Article
CAS
Google Scholar
Holtum, J.A.M., Winter, K.: Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2. — Planta 218: 152–158, 2003.
PubMed
Article
CAS
Google Scholar
Lüttge, U., Klauke, B., Griffiths, H. et al.: Comparative ecophysiology of CAM and C3 bromeliads. V. Gas exchange and leaf structure of the C3 bromeliad Pitcairnia integrifolia. — Plant Cell Environ. 9: 411–419, 1986b.
Article
Google Scholar
Lüttge, U., Stimmel, K.-H., Smith, J.A.C., Griffiths, H.: Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. — Plant Cell Environ. 9: 377–383, 1986a.
Article
Google Scholar
Maxwell, K.: Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. — Funct. Plant Biol. 29: 679–687, 2002.
Article
CAS
Google Scholar
Maxwell, C., Griffiths, H., Borland, A.M. et al.: Photoinhibitory responses of the epiphytic bromelioid Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. — Plant Cell Environ. 15: 37–47, 1992.
Article
Google Scholar
Maxwell, C., Griffiths, H., Young, A.J.: Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. — Funct. Ecol. 8: 745–754, 1994.
Article
Google Scholar
Medina, E., Delgado, M., Troughton, J.H., Medina, J.D.: Physiological ecology of CO2 fixation in Bromeliaceae. — Flora 166: 137–152, 1977.
CAS
Google Scholar
Medina, E., Minchin, P.: Stratification of δ13C values in Amazonian rain forests. — Oecologia 45: 377–378, 1980.
Article
Google Scholar
Mez, C.: [Physiological studies on Bromeliaceae. I. The water economy of extremely atmospheric tillandsias.] — Jahr. Wiss. Bot. 40: 157–229, 1904. [In German]
Google Scholar
Osmond, C.B.: Crassulacean acid metabolism: a curiosity in context. — Annu. Rev. Plant Physiol. 29: 379–414, 1978.
Article
CAS
Google Scholar
Pierce, S., Maxwell, K., Griffiths, H., Winter, K.: Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. — Amer. J. Bot. 88: 1371–1389, 2001.
Article
CAS
Google Scholar
Pierce, S., Winter, K., Griffiths, H.: Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. — New Phytol. 156: 75–83, 2002.
Article
CAS
Google Scholar
R Development Core Team: A language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna 2011.
Google Scholar
Schmidt, G., Zotz, G.: Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. — Plant Cell Environ. 24: 101–111, 2001.
Article
Google Scholar
Schmidt, J.E., Kaiser, W.M.: Response of the succulent leaves of Peperomia magnoliaefolia to dehydration: water relations and solute movement in chlorenchyma and hydrenchyma. — Plant Physiol. 83: 190–194, 1987.
PubMed
Article
CAS
Google Scholar
Smith, J.A.C., Griffiths, H., Bassett, M., Griffiths, N.M.: Daynight changes in the leaf water relations of epiphytic bromeliads in the rain forests of Trinidad. — Oecologia 67: 475–485, 1985.
Article
Google Scholar
Smith, J.A.C., Griffiths, H., Lüttge, U.: Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeliaceae in Trinidad. — Plant Cell Environ. 9: 359–376, 1986.
Article
Google Scholar
Silvera, K., Santiago, L.S., Winter, K.: Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. — Funct. Plant Biol. 32: 397–407, 2005.
Article
CAS
Google Scholar
Tomlinson, P.B.: Monocotyledons — towards an understanding of their morphology and anatomy. — Adv. Bot. Res. 3: 207–292, 1970.
Article
Google Scholar
West-Eberhard, M.J., Smith, J.A.C., Winter, K.: Photosynthesis, reorganized. — Science 332: 311–312, 2011.
PubMed
Article
CAS
Google Scholar
Winter, K., Aranda, J.E., Holtum, J.A.M.: Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. — Funct. Plant Biol. 32: 381–388, 2005.
Article
CAS
Google Scholar
Winter, K., Garcia, M., Holtum, J.A.M.: On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. — J. Exp. Bot. 59: 1829–1840, 2008.
PubMed
Article
CAS
Google Scholar
Winter, K., Garcia, M., Holtum, J.A.M.: Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode. — J. Exp. Bot. 62: 4037–4042, 2011.
PubMed
Article
CAS
Google Scholar
Winter, K., Holtum, J.A.M.: How closely do the ·13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? — Plant Physiol. 129: 1843–1851, 2002.
PubMed
Article
CAS
Google Scholar
Winter, K., Holtum, J.A.M.: Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. — Plant Physiol. 143: 98–107, 2007.
PubMed
Article
CAS
Google Scholar
Winter, K., Holtum, J.A.M.: Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. — Funct. Plant Biol. 38: 576–582, 2011.
Article
CAS
Google Scholar
Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. — Ecological Studies, Vol. 114. Springer, Berlin — Heidelberg — New York 1996.
Zotz, G., Enslin, A., Hartung, W., Ziegler, H.: Physiological and anatomical changes during the early ontogeny of the heteroblastic bromeliad, Vriesea sanguinolenta, do not concur with the morphological change from atmospheric to tank form. — Plant Cell Environ. 27: 1341–1350, 2004.
Article
Google Scholar
Zotz, G., Harris, G.K., Königer, M., Winter K.: High rates of photosynthesis in the tropical pioneer tree, Ficus insipida Willd. — Flora 190: 265–272, 1995.
Google Scholar
Zotz, G., Wilhelm, K., Becker, A.: Heteroblasty—A review. — Bot. Rev. 77: 109–151, 2011.
Article
Google Scholar