Skip to main content
Log in

Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes

  • Published:
Photosynthetica

Abstract

Morphological and physiological traits of Crepis pygmaea L. subsp. pygmaea and Isatis apennina Ten. ex Grande growing at different altitudes in the Gran Sasso Massif (Abruzzo, Italy) were analyzed. The two populations of C. pygmaea and I. apennina growing at the highest altitude (C p2 and I p2 at 2,310 m a.s.l. and 2,350 m a.s.l., respectively) had a lower leaf mass area (LMA) than the two populations growing at the lowest altitude (C p1 and I p1 at 2,250 m a.s.l. and 2,310 m a.s.l., respectively). Leaf tissue density (LTD) had the same LMA trend, decreasing 23 and 10% in C. pygmaea and I. apennina, respectively, from the highest to the lowest altitude. C. pygmaea and I. apennina had the highest photosynthetic rates (P N) in July decreasing on an average 17 and 30%, respectively, in August and 50 and 38%, respectively, in September. Leaf respiration (R) in I p1 and I p2 had the same trend as C p1 and C p2, showing the highest rates in September. Global warming could drive C. pygmaea and I. apennina toward higher altitudes in the Gran Sasso Massif. Nevertheless, C. pygmaea with the higher plasticity index (PI) both at physiological and at morphological levels (0.50 and 0.35, respectively) might have a competitive advantage over I. apennina over the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll content

DM:

leaf dry mass

E :

transpiration rate

g s :

stomatal conductance

H:

plant height

L:

leaf thickness

LA:

leaf area

LMA:

leaf mass per unit of leaf area

LTD:

leaf tissue density

P g :

gross photosynthetic rate

PI:

plasticity index

P N :

net photosynthetic rate

PAR:

photosynthetically active radiation

PCA:

Principal component analysis

R :

leaf respiration rate

RH:

relative air humidity

RWCpd :

predawn relative leaf water content

T a :

air temperature

TLA:

total leaf area per plants

WUE:

instantaneous water-use efficiency

Ψpd :

predawn leaf water potential

References

  • Aasamaa, K., Heinsoo, K., Holm, B.: Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system. — Biomass Bioenerg. 34: 897–905, 2010.

    Article  CAS  Google Scholar 

  • Atkin, O.K., Evans, J.R., Ball, M.C., Siebke, K.: Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. — Aust. J. Plant Physiol. 25: 437–433, 1998a.

    Article  Google Scholar 

  • Atkin, O.K., Evans, J.R, Ball, M.C., Siebke, K., Pons, T.L., Lambers, H.: Light inhibition of leaf respiration: the role of irradiance and temperature. — In: Moller, I.M., Gardestrom, P., Gliminius, K., Glaser, E. (ed.): Plant Mitochondria: from Gene to Function. Pp. 567–574. Backhuys Publishers, Leiden 1998b.

    Google Scholar 

  • Baldoni M., Biondi E., Frattaroli, A.R.: [Bioclimatic characterization of the Gran Sasso of Italy.] — Braun- Blanquetia 16: 7–20, 1999. [In Italian.]

    Google Scholar 

  • Bonito, A., Gratani, L, Varone, L.: Relationships between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates. — Photosynthetica 49: 75–86, 2011.

    Article  Google Scholar 

  • Byars, S.E, Papst, W., Hoffmann, A.A.: Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. — Evolution 61: 2925–2941, 2007.

    Article  PubMed  Google Scholar 

  • Cai, Z.Q., Slot, M., Fan, Z.X.: Leaf development and photosynthetic properties of three tropical species with delayed greening. — Photosynthetica 43: 91–98, 2005.

    Article  CAS  Google Scholar 

  • Conti, F., Manzi, A., Pedrotti, F.: [Regional Red Lists of the Italian Flora.] — TIPAR, Rome 1997. [In Italian.]

    Google Scholar 

  • Di Pietro, R., Conti, F., Vannicelli Casoni, L.: On the presence of a new Linario-Festucion dimophae association on Laga Mountains (Central Italy). — Fitosociologia 38: 65–75, 2001.

    Google Scholar 

  • Dirnböck, T., Essl, F., Rabitsch, W.: Disproportional risk for habitat loss of high-altitude endemic species under climate change. — Global Change Biol. 17: 990–996, 2011.

    Article  Google Scholar 

  • Erschbamer, B., Kiebacher, T., Mallaun, M., Unterluggauer, P.: Short-term signals of climate change along an altitudinal gradient in the South Alps. — Plant Ecol. 202: 79–89, 2009.

    Article  Google Scholar 

  • Etterson, J.R., Shaw, R.G.: Constraint to adaptive evolution in response to global warming. — Science 294: 151–154, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Flexas, J., Bota, J., Galmes, J., Medrano, H., Ribas-Carbo, M.: Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. — Physiol. Plantarum 127: 343–352, 2006.

    Article  CAS  Google Scholar 

  • Giglio, E., Tammaro, F.: [Change in the plant landscape of Italian Gran Sasso]. — In: Cicolani, B. (ed.): [Biological monitoring of the Gran Sasso]. Pp. 16–33. Editrice Andromeda, Colledara 1996. [In Italian.]

    Google Scholar 

  • Giraudi, C., Frezzotti, M.: Late pleistocene glacial events in the Central Apennines, Italy. — Quaternary Res. 48: 280–290, 1997.

    Article  Google Scholar 

  • Gratani, L., Catoni, R., Varone, L.: Photosynthetic and leaf respiration activity of Malcolmia littorea (L.) R. Br. In response to air temperature. — Photosynthetica 49: 65–74, 2011.

    Article  CAS  Google Scholar 

  • Jump, A. S., Peñuelas, J.: Running to stand still: adaptation and the response of plants to rapid climate change. — Ecol. Lett. 8: 1010–1020, 2005.

    Article  Google Scholar 

  • Larcher, W., Kainmüller, C., Wagner, J.: Survival types of high mountain plant under extreme temperature. — Flora 205: 3–18, 2010.

    Article  Google Scholar 

  • Lenoir, J., Gégout, J.C., Dupouey, J.L., Bert, D., Svenning, J.-C.: Forest plant community changes during 1989–2007 in response to climate warming in the Jura Mountains (France and Switzerland). — J.Veg. Sci. 21: 949–964, 2010.

    Article  Google Scholar 

  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A. J. G.-G., Seidl, R., Delzon, S., Corona, P., Kolstrom, M., Lexer, M.J., Marchetti, M.: Climate change impacts, adaptative capacity, and vulnerability of European forest ecosystems. — Forest Ecol. Manag. 259: 698–709, 2009.

    Article  Google Scholar 

  • McGraw, J.B.: Experimental ecology of Dryas octopetala ecotypes. — Oecologia 73: 465–468, 1987.

    Article  Google Scholar 

  • Morgan, J.W.: Reproductive success in reestablished versus natural population of a threatened grassland daisy (Rutidosis leptorrhynchoides). — Conserv. Biol. 14: 780–785, 2000.

    Article  Google Scholar 

  • Neuner, G., Ambach, D., Aichner, K.: Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. — Tree Physiol. 19: 725–732, 1999.

    PubMed  Google Scholar 

  • Nogués-Bravo, D., Araújo, M.B., Errea, M.P., Martínez-Rica, J.P.: Exposure of global mountain systems to climate change. — Global Environ. Change 17: 420–428, 2007.

    Article  Google Scholar 

  • Ow, L.F., Griffin, K.L., Whitehead, D., Walcroft, A.S, Tumbull, M.H.: Thermal acclimation of leaf respiration but not photosynthesis in Populus 8honolog × nigra. — New Phytol. 178: 123–134, 2008.

    Article  PubMed  Google Scholar 

  • Pauli, H., Gottfried, M., Grabherr, G.: Effect of climate change on the alpine and nival vegetation of the Alps. — J. Mt. Ecol. 7: 9–12, 2003.

    Google Scholar 

  • Pignatti, S.: [Flora of Italy.] — Edagricole, Bologna 1982. [In Italian.]

    Google Scholar 

  • Reich, P.B., Uhl, C., Walters, M.B., Ellsworth, D.S.: Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. — Oecologia 86: 16–24, 1991.

    Article  Google Scholar 

  • Rossi, W., Pirone, G., Frattaroli, A.R., Di Martino, L.: [Flowers of the Italian Gran Sasso.] — Edizioni L’Una, L’Aquila 2008. [In Italian.]

    Google Scholar 

  • Savolainen, O., Bokma, F., Garcia-Gil, R., Komulainen, P., Repo. T.: Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. — Forest Ecol. Manage. 197: 79–89, 2004.

    Article  Google Scholar 

  • Shen, H., Tang, Y., Muraoka, H., Washitani, I.: Characteristics of leaf photosynthesis and simulated individual carbon budget in Primula nutans under contrasting light and temperature conditions. — J. Plant Res. 121: 191–200, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Shi, F.S., Wu, Y., Wu, N., Luo, P.: Different growth and physiological responses to experimental warming of two dominant plant species Elymus nutans and Potentilla anserine in an alpine meadow of the eastern Tibetan Plateau. — Photosynthetica 48: 437–445, 2010.

    Article  Google Scholar 

  • Takahashi, K., Miyajima, Y.: Relationships between leaf life span, leaf mass per area, and leaf nitrogen cause different altitudinal changes in leaf δ 13C between deciduous and evergreen species. — Botany 86: 1233–1241, 2008.

    Article  CAS  Google Scholar 

  • Taguchi, Y., Wada, N.: Variations of leaf traits of an alpine shrub Sieversia pentapetala along an altitudinal gradient and under a simulated environmental change. — Polar Biosci. 14: 79–87, 2001.

    Google Scholar 

  • Theurillat, J.-P., Guisan, A.: Potential impact of climate change on vegetation in the European Alps: A review. — Climatic Change 50: 77–109, 2001.

    Article  CAS  Google Scholar 

  • Valladares, F., Wright, J., Lasso, E., Kitajima, K., Pearcy, R.W.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. — Ecology 81: 1925–1936, 2000.

    Article  Google Scholar 

  • Vitasse, Y., Bresson, C.C., Kremer, A., Michalet, R., Delzon, S.: Quantifying phenological plasticity to temperature in two temperate tree species. — Funct. Ecol. 24: 1211–1218, 2010.

    Article  Google Scholar 

  • Yamori, W., Noguchi, K., Terashima, I.: Temperature acclimation of photosynthesis in spinach leaf: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. — Plant Cell Environ. 28: 536–547, 2005.

    Article  CAS  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M. et al.: The worldwide leaf economics spectrum. — Nature 428: 821–827, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gratani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratani, L., Catoni, R., Pirone, G. et al. Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. Photosynthetica 50, 15–23 (2012). https://doi.org/10.1007/s11099-012-0006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0006-x

Additional key words

Navigation