Skip to main content

28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress

Abstract

The ameliorative role of 28-homobrassinolide under chilling stress in various growth, photosynthesis, enzymes and biochemical parameters of cucumber (Cucumis sativus L.) were investigated. Cucumber seedlings were sprayed with 0 (control), 10−8, or 10−6 M of 28-homobrassinolide at the 30-day stage. 48 h after treatment plants were exposed for 18 h to chilling temperature (10/8°C, 5/3°C). The most evident effect of chilling stress was the marked reduction in plant growth, chlorophyll (Chl) content, and net photosynthetic rate, efficiency of photosystem II and activities of nitrate reductase and carbonic anhydrase. Moreover, the activities of antioxidant enzymes; catalase (E.C. 1.11.1.6), peroxidase (E.C.1.11.1.7), superoxide dismutase (E.C. 1.15.1.1) along with the proline content in leaves of the cucumber seedlings increased in proportion to chilling temperature. The stressed seedlings of cucumber pretreated with 28-homobrassinolide maintained a higher value of antioxidant enzymes and proline content over the control suggesting the protective mechanism against the ill-effect caused by chilling stress might be operative through an improved antioxidant system. Furthermore, the protective role of 28-homobrassinolide was reflected in improved growth, water relations, photosynthesis and maximum quantum yield of photosystem II both in the presence and absence of chilling stress.

This is a preview of subscription content, access via your institution.

Abbreviations

AOS:

active oxygen species

BRs:

brassinosteroids

C i :

internal carbon dioxide concentration

CA:

carbonic anhydrase

CAT:

catalase

CO2 :

carbon dioxide

CS1:

chilling stress 1

CS2:

chilling stress 2

DAS:

days after sowing

DDW:

double distilled water

DM:

dry mass

E :

transpiration rate

EBR:

epi-brassinolide

FM:

fresh mass

g s :

stomatal conductance

HBL:

28-homobrassinolide

LSD:

least significant difference

NR:

nitrate reductase

P N :

net photosynthetic rate

POX:

peroxidase

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

RWC:

relative water content

SOD:

superoxide dismutase

TM:

turgor mass

UV:

ultraviolet

WUE:

water-use efficiency

Ψw :

leaf water potential

References

  • Alam, M.M., Hayat, S., Ali, B., Ahmad, A.: Effect of 28 homobrassinolide on nickel induced changes in Brassica juncea. — Photosynthetica 45: 139–142, 2007.

    Article  Google Scholar 

  • Ali, B., Hassan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A.: A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). — Environ. Exp. Bot. 62: 153–159, 2008.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Fariduddin, Q., Ahmad. A.: 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. — Chemosphere 72: 1387–1392, 2008.

    PubMed  Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Ahmad, A.: 28-Homobrassinolide ameliorates the salt stress in chickpea (Cicer arietinum L.). — Environ. Exp. Bot. 59: 217–223, 2007.

    Article  CAS  Google Scholar 

  • Ali, M.B., Hahn, E.J., Paek, K.Y.: Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. — Plant Physiol. Biochem. 43: 213–223, 2005.

    PubMed  Article  CAS  Google Scholar 

  • Allen, D.J., Ort, D.R.: Impact of chilling temperatures on photosynthesis in warm-climate plants. — Trends Plant Sci. 6: 36–42, 2001.

    PubMed  Article  CAS  Google Scholar 

  • Aro, E.-M., Virgin, I., Andersson, B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. — Biochim. Biophys. Acta 1143: 113–134, 1993.

    PubMed  Article  CAS  Google Scholar 

  • Bajguz, A.: Effect of brassinosteroids on nucleic acid and protein content in cultured cells of Chlorella vulgaris. — Plant Physiol. Biochem. 38: 209–215, 2000.

    Article  CAS  Google Scholar 

  • Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.

    PubMed  Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies.— Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Beauchamp, L.D., Fridovich, I.: Superoxide dismutase improved assays and assay applicable to acrylamide gels. — Ann. Biochem. 44: 216–287, 1971.

    Article  Google Scholar 

  • Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant. Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  • Björkmann, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characterstics at 77 K among vascular plants of different origins. — Planta 170: 489–504, 1987.

    Article  Google Scholar 

  • Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Hu, B.Z., Zhao, H.F., Kuai, B.K.: Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. — Physiol. Plant. 123: 57–66, 2005.

    Article  CAS  Google Scholar 

  • Chance, B., Maehly, A.C.: Assay of catalase and peroxidases. — Meth. Enzymol. 2: 764–775, 1955.

    Article  Google Scholar 

  • Clouse, S.D., Sasse, J.M.: Brassinosteroids: Essential regulators of plant growth and development. — Annu. Rev. Plant Physiol. Plant Molecular Biol. 49: 427–451, 1998.

    Article  CAS  Google Scholar 

  • Crafts-Brandner, S.J., Salvucci, M.E.: Sensitivity of photosynthesis in a C4 plant maize to heat stress. — Plant Physiol. 129: 1773–1780, 2002.

    PubMed  Article  CAS  Google Scholar 

  • Dwivedi, R.S., Randhawa, N.S.: Evolution of a rapid test for the hidden hunger of zinc in plants — Plant Soil 40: 445–451, 1974.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Ahmad, A., Hayat, S.: Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. — Biol. Plant. 48: 465–468, 2004.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Hayat, S., Ahmad A.: Effects of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. Exp. Bot. 66: 418–424, 2009a.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Khanam, S., Hasan, S.A., Ali, B., Hayat, S.A., Ahmad, A.: Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. — Acta. Physiol. Plant. 31: 889–897, 2009b.

    Article  CAS  Google Scholar 

  • Gomez, K.A., Gomez, A.A.: Statistical Procedures for Agricultural Research. — John Wileys & Sons, New York 1984.

    Google Scholar 

  • Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N.B., Worley, J.F., Warthen, J.D., Jr., Steffens, G.L., Flippen-Anderson, J.L., Cook, J.C., Jr.: Brassinolide a plant growth promoting steroid isolated from Brassica napus pollen. — Nature 281: 216–217, 1979.

    Article  CAS  Google Scholar 

  • Hasan, S.A., Hayat, S., Ali, B., Ahmad, A.: 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. — Environ. Pollut. 151: 60–66, 2008.

    PubMed  Article  CAS  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S.A., Ahmad, A.: Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. — Environ. Exp. Bot. 60: 33–41, 2007.

    Article  CAS  Google Scholar 

  • Hewitt, E.J.: Sand and Water Culture Methods used in the Study of Plant Nutrition. — Commonwealth Agricultural Bureaux, Farnham Royal, Kent 1966.

    Google Scholar 

  • Hopkins, W.J.: Introduction to Plant Physiology. — John Wiley & Sons, New York 1995.

    Google Scholar 

  • Janeckzo, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infilteration prior to cold treatment on ion leakage and pigment contents in rape leaves. — Biol. Plant. 51: 355–358, 2007.

    Article  Google Scholar 

  • Jaworski, E.G.: Nitrate reductase assay in intact plant tissues. — Biochem.Biophy. Res. Commun. 43: 1274–1279, 1971.

    Article  CAS  Google Scholar 

  • Kagale, S., Divi, U.K., Kronchko, J.E., Keller, W.A., Krishna, P.: Brassinosteroid conifers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. — Planta 225: 353–364, 2007.

  • Kalinich, J.F., Mandava, N.B., Todhunter, and J.A.: Relationship of nucleic acid metabolism on brassinolide-induced responses in beans. — J. Plant Physiol. 120: 207–214, 1985.

    CAS  Google Scholar 

  • Katsumi, M.: Physiological modes of brassinolide action in ccumber hypocotyls growth. — In: Cutler, H.G., Yokota, T, Adam, G. (ed.): Brassinosteroids: Chemistry, Bioactivity and Applications. American Chemical Society Symposium Series 474. Pp. 246–254, American Chemical Society, Washington, 1991.

    Chapter  Google Scholar 

  • Kishore, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of proline biosynthesis degradation uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. — Current Science 88: 424–438, 2005.

    Google Scholar 

  • Kratsch, H.A., Wise, R.R.: The ultrastructure of chilling stress. — Plant Cell Environ. 23: 337–350, 2000.

    Article  CAS  Google Scholar 

  • Krishna, P.: Brassinosteroid-mediated stress responses. — J. Plant Growth Regul. 22: 289–297, 2003.

    PubMed  Article  CAS  Google Scholar 

  • Lee, H.D., Lee, B.C.: Chilling stress induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. — Plant Science 159: 75–85, 2000.

    PubMed  Article  CAS  Google Scholar 

  • Mai, Y.Y., Lin, J.M., Zeng, X.L., Pan, R.J.: Effect of homobrassinolide on the activity of nitrate reductase in rice seedling. — Plant Physiol. Commun. 2: 50–52, 1989.

    Google Scholar 

  • Morales, D., Rodríguez, D., Dell’Amico, J., Nicolás, E., Torrecillas, A., Sánchez Blanco, M.J.: High temperature pre conditioning and thermal shock imposition affect water relations gas exchange and root hydraulic conductivity in tomato. — Biol. Plant. 47: 203–208, 2003.

    Article  Google Scholar 

  • Mussig, C., Fischer, S., Altmann, T.: Brassinosteroid regulated gene expression. — Plant Physiol. 129: 1241–1251, 2002.

    PubMed  Article  CAS  Google Scholar 

  • Oidaira, H., Sano, S.; Koshiba, T.; Ushimaru, T.: Enhancement of antioxidative enzyme activities in chilled rice seedlings. — J. Plant Physiol. 156: 811–813, 2000.

    CAS  Google Scholar 

  • Ozdemir, F., Bor, M., Demiral, T., Turkan, I.: Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidant system of rice (Oryza sativa L.) under salinity stress. — Plant Growth Regul. 41: 1–9, 2004.

    Google Scholar 

  • Sairam, R.K.: Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. — Plant Growth Regul. 14: 173-181, 1994.

    Google Scholar 

  • Sairam, R.K., Tyagi, A.: Physiology and molecular biology of salinity stress tolerance in plants. — Current Sci. 86: 407–421, 2004.

    CAS  Google Scholar 

  • Saltveit, M.E., Morris, L.L.: Overview on chilling injury of horticultural crops. — In: Wang, C.Y. (ed.): Chilling Injury of Horticultural Crops. Pp 3–15. CRC Press, Boca Raton 1990.

    Google Scholar 

  • Salveit, M.E.: Chilling injury is reduced in cucumber and rice seedlings in tomato pericarp discs by heat-shocks applied after chilling. — Postharvest Biol. Tech. 21: 169–177, 2001.

    Article  Google Scholar 

  • Salvucci, M.E., Crafts-Brander, S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. — Plant Physiol. 134: 1460–1470, 2004.

    PubMed  Article  CAS  Google Scholar 

  • Sasse, J.M.: Physiological actions of brassinosteroids: An update. — J. Plant Growth Regul. 22: 276–288, 2003.

    PubMed  Article  CAS  Google Scholar 

  • Solomonson, L.P., Barber, M.J.: Assimilatory nitrate reductase functional properties and regulation. — Annu. Rev. Plant Physiol. Mol. Biol. 41: 225–25, 1990.

    Article  CAS  Google Scholar 

  • Sonoike, K.: The different roles of chilling temperature in the photoinhibition of photosystem I and photosystem II. — J. Photochem. Photobiol. 48: 136–141, 1999.

    Article  CAS  Google Scholar 

  • Sutka, J., Galiba, G.: Abiotic Stresses: Cold Stress. — Agr. Res. Inst. Hung. Acad. Sci., Martonvasar 2003.

    Google Scholar 

  • Taiz, L., Zeiger.: Plant Physiology. 4th Ed. — Sinauer Assoc. Publ., Sunderland 2006.

    Google Scholar 

  • Tikhomirova, E.V.: Changes in nitrogen metabolism in millet and elevated temperatures. — Field Crops Res. 11: 259–264, 1995.

    Article  Google Scholar 

  • van Staden, L., Jagr, A.K.: Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. — Plant Growth Regul. 25: 81–87, 1998.

    Article  Google Scholar 

  • Vardhini, B.V., Rao, S.S.R.: Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. — Plant Growth Regul. 41: 25–31, 2003.

    Article  CAS  Google Scholar 

  • Walker, M.A., McKersie, B.D.: Role of the ascorbateglutathione antioxidant system in chilling resistance of tomato. — J. Plant Physiol. 141: 234–239, 1993.

    CAS  Google Scholar 

  • Wang, C.Y.: Physiological and biochemical responses of plants to chilling stress. — Hortsci. 17: 173–186, 1982.

    CAS  Google Scholar 

  • Wilen, R.W., Sacco, M., Gusta, L.V., Krishna, P.: Effects of 24-epibrassinolide on freezing and thermotolerance of bomegrass (Bromus inermis) cell cultures. — Physiol. Plant. 95: 195–202, 1995.

    Article  CAS  Google Scholar 

  • Wise, R.R., Naylor, A.W.: Chilling-enhanced photo-oxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. — Plant Physiol. 83: 272–277, 1987.

    PubMed  Article  CAS  Google Scholar 

  • Yang, M.T., Chen, S.L., Lin, C.Y., Chen, Y.M.: Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. — Planta 221: 374–385, 2005.

    PubMed  Article  CAS  Google Scholar 

  • Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Noques, S.: A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. — J. Exp. Bot. 55: 1135–1143, 2004.

    PubMed  Article  CAS  Google Scholar 

  • Yu, J.Q., Zhou, Y.H., Huang, L.F., Allen D.J.: Chill induced inhibition of photosynthesis: Genotype variation within Cucumis sativus. — Plant Cell Physiol. 43: 1182–1188, 2002.

    PubMed  Article  CAS  Google Scholar 

  • Zhou, Y.H., Huang, L.F., Zhang, Y.L., Shi, K., Yu, J.Q., Nogués, S.: Chill induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto fig leaf gourd. — Ann. Bot. 100: 839–848, 2007.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial assistance rendered by Department of Science and Technology, New Delhi, India is gratefully acknowledged by Q. Fariduddin

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fariduddin, Q., Yusuf, M., Chalkoo, S. et al. 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49, 55–64 (2011). https://doi.org/10.1007/s11099-011-0022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-011-0022-2

Additional key words

  • antioxidant enzymes
  • brassinosteroids
  • chilling stress
  • chlorophyll fluorescence
  • Cucumis sativus
  • photosynthesis