Skip to main content
Log in

A comparative analysis of photosynthetic characteristics of hulless barley at two altitudes on the Tibetan Plateau

  • Original Papers
  • Published:
Photosynthetica

Abstract

To determine the photosynthetic characteristics of C3 plants and their sensitivity to CO2 at different altitudes on the Tibetan Plateau, hulless barley (Hordeum vulgare L. ssp. vulgare) was grown at altitudes of 4,333 m and 3,688 m. Using gas-exchange measurements, photosynthetic parameters were simulated, including the maximum net photosynthesis (P max) and the apparent quantum efficiency (α). Plants growing at higher altitude had higher net photosynthetic rates (P N), photosynthesis parameters (P max and α) and sensitivities to CO2 enhancement than plants growing at lower altitude on the Tibetan Plateau. The enhancements of P N, P max, and α for plants growing at higher altitude, corresponding with 10 μmol(CO2) mol−1 increments, were approximately 0.20∼0.45%, 0.05∼0.20% and 0.12∼0.36% greater, respectively, than for plants growing at lower altitude, respectively, where CO2 levels rose from 10 to 170 μmol(CO2) mol−1. Therefore, on the Tibetan Plateau, the changes in the photosynthetic capacities and the photosynthetic sensitivities to CO2 observed in the C3 plants grown above 3,688 m are likely to increase with altitude despite the decreasing CO2 partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

P max :

maximum net photosynthesis

P max350 :

maximum net photosynthesis at 350 μmol(CO2) mol−1

P N :

net photosynthetic rate

PPFD:

incident photosynthetic photon flux density

R D :

day respiration rate

T:

leaf temperature

α:

apparent quantum efficiency

α0 :

apparent maximum quantum efficiency

τ:

CO2 compensation point in the absence of day respiration

θ:

convexity

SD:

standard deviation

References

  • Akhkha, A., Reid, I., Clarke, D.D., Dominy, P.: Photosynthetic light response curves determined with the leaf oxygen electrode: minimisation of errors and significance of the convexity term. — Planta 214: 135–141, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Badger, M.: Photosynthetic oxygen exchange. — Annu. Rev. Plant Physiol. 36: 27–53, 1985.

    Article  CAS  Google Scholar 

  • Barigah, T.S., Saugier, B., Mousseau, M., Guittet, J., Ceulemans, R.: Photosynthesis, leaf area and productivity of 5 poplar clones during their establishment year. — Ann. Sci. Forest 51: 613–625, 1994.

    Article  Google Scholar 

  • Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  • Billings, W.D., Mooney H.A.: The ecology of arctic and alpine plants. — Biol. Rev. 43: 481–529, 1968.

    Article  Google Scholar 

  • Brooks, A., Farquhar, G.D.: Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach. — Planta 165:397–406, 1985.

    Article  CAS  Google Scholar 

  • Cabrera, H.M., Rada, F., Cavieres, L.: Effects of temperature on photosynthesis of two morphologically contrasting plant species along an altitudinal gradient in the tropical high Andes. — Oecologia 114: 145–152, 1998.

    Article  Google Scholar 

  • Cannon, W.N., Jr., Roberts, B.R.: Stomatal resistance and the ratio of intercellular to ambient carbon dioxide in container-grown yellow-poplar seedlings exposed to chronic ozone fumigation and water stress. — Environ. Exp. Bot. 35: 161–165, 1995.

    Article  CAS  Google Scholar 

  • Castrillo, M.: Photosynthesis in three altitudinal populations of the Andean plant Espeletia schultzii (Compositae). — Rev. Biol. Trop. 54: 1143, 2006.

    PubMed  Google Scholar 

  • Dillaway, D.N.: Thermal acclimation of metabolism and its consequences for plant carbon balance: A comparison of boreal and temperature tree species along a latitudinal transect. — Ph.D. dissertation, Univ. Wisconsin, Madison 2009.

    Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Friend, A.D., Woodward, F. I.: Evolutionary and ecophysiological responses of mountain plants to the growing season environment. — Adv. Ecol. Res. 20: 59–124, 1990.

    Article  Google Scholar 

  • Fryer, J., Ledig, F.: Microevolution of the photosynthetic temperature optimum in relation to the elevational complex gradient. — Can. J. Botany 50: 1231–1235, 1972.

    Article  Google Scholar 

  • Gale, J.: Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. — Ecology 53: 494–497, 1972.

    Article  Google Scholar 

  • Goudriaan, J., van Laar, H.H., van Keulen, H., Louwerse, W.: Photosynthesis, CO2 and plant production. — In: Day, W., Atkin, R.K. (ed.): Wheat Growth and Modeling. Pp.107–122. Plenum Press, New York1985.

    Google Scholar 

  • Heber, U., Walker, D: Concerning a dual function of coupled cyclic electron transport in leaves. — Plant Physiol. 100: 1621–1626, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kao, W.Y., Chang, K.W.: Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. — Aust. J. Bot. 49: 509–514, 2001.

    Article  Google Scholar 

  • Körner, C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. — Springer, New York — Berlin — Heidelberg 2003.

    Google Scholar 

  • Körner, C.: The use of ‘altitude’ in ecological research. — Trends Ecol. Evol. 22: 569–574, 2007.

    Article  PubMed  Google Scholar 

  • Körner, C., Bannister, P., Mark, A.F.: Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. — Oecologia 69: 577–588, 1986.

    Article  Google Scholar 

  • Körner, C., Diemer, M.: In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. — Funct. Ecol. 1: 179–194, 1987.

    Article  Google Scholar 

  • Körner, C., Neumayer, M., Menendez-Riedl, S.P., Smeets-Scheel, A.: Functional morphology of moutain plants. — Flora 182: 353–383, 1989.

    Google Scholar 

  • Körner, C., Pelaez Menendez-Riedl, S.: The significance of developmental aspects in plant growth analysis. — In: Lambers, H., Cambridge, H., Konings, H., Pons, T.L. (ed.): Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. Pp. 141–157. SPB Academic Publish., The Hague 1990.

    Google Scholar 

  • Li, C.Q., Tang, M.C.: [The climate change of Qinghai-Tibetan plateau and its neighborhood in recent 30 years.] — Plateau Meteorol. 4: 332–341, 1988. [In Chin.]

    Google Scholar 

  • Lindroth, A., Grelle, A., Moren, A.S.: Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. — Global Change Biol. 4: 443–450, 1998.

    Article  Google Scholar 

  • Liu, Y.F., Zhang, X.Z., Zhang, Y.G, Zhou, Y.H.: [Apparent quantum yield of photosynthesis of winter wheat in the field in Tibet Plateau.] — Acta Phytoecol. Sin. 20: 35–38, 2000. [In Chin.]

    Google Scholar 

  • Marshall, B., Biscoe, P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. — J. Exp. Bot. 31: 29–39, 1980.

    Article  CAS  Google Scholar 

  • McMichael, A.J., Campbell-Lendrum, D., Edwards, S., Wilkinson, P., Wilson, T., Nicholls, R., Hales, S., Tanser, F., Sueur, D.L., Schlesinger, M., Andronova, N.: Comparative quantification of health risks: global and regional burden of disease due to selected major risk factors.— In: Ezzati, M., Lopez, A.D., Rodgers, A., Murray, C.J.L. (ed.): Global Climate Change. Pp. 1543–1649. World Health Org., Geneva 2004.

    Google Scholar 

  • Morecroft, M.D., Woodward, F.I.: Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. — New Phytol. 134: 471–479, 1996.

    Article  CAS  Google Scholar 

  • Moreno-Sotomayor, A., Weiss, A., Paparozzi, E.T., Arkebauer, T.J.: Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status. — J. Plant Physiol. 159: 819–826, 2002.

    Article  CAS  Google Scholar 

  • Oguchi, R., Hikosaka, K., Hirose, T.: Does the photosynthetic light-acclimation need change in leaf anatomy? — Plant Cell Environ. 26: 505–512, 2003.

    Article  Google Scholar 

  • Pons, T.L., Anten, N.P.R.: Is plasticity in partitioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies? — Funct. Ecol. 18: 802–811, 2004.

    Article  Google Scholar 

  • Pyankov, V.I., Kondratchuk, A.V., Shipley, B.: Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. — New Phytologist 143: 131–142, 1999.

    Article  Google Scholar 

  • Rada, F., Briceño B., Azócar, A.: How do two Lupinus species respond to temperature along an altitudinal gradient in the Venezuelan Andes? — Rev. Chil. Historia Natur. 81: 335–343, 2008.

    Google Scholar 

  • Sakata, T., Yokoi, Y.: Analysis of the O2 dependency in leaf-level photosynthesis of two Reynoutria japonica populations growing at different altitudes. — Plant Cell Environ. 25: 65–74, 2002.

    Article  Google Scholar 

  • Shi, P.L., Zhang, X.Z., Zhong, Z.M.: [Apparent photon yield of winter wheat and response to temperature and intercellular carbon dioxide concentration under low atmospheric pressure on Tibetan Plateau.] — Sci. China Ser. D 34: 161–166, 2004. [In Chin.]

    Google Scholar 

  • Shi, P.L., Zhang, X.Z., Zhong, Z.M., Ouyang, H.: Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. — Agr. Forest Meteorol. 137: 220–233, 2006.

    Article  Google Scholar 

  • Terashima, I., Masuzawa, T., Ohba, H., Yokoi, Y.: Is photosynthesis suppressed at higher elevations due to low CO2 pressure? — Ecology 76: 2663–2668, 1995.

    Article  Google Scholar 

  • Tranquillini, W.: The physiology of plants at high altitudes. — Ann. Rev. Plant Physiol. 15: 345–362, 1964.

    Article  CAS  Google Scholar 

  • Tranquillini, W., Havranek, W.M., Ecker, P.: Effects of atmospheric humidity and acclimation temperature on the temperature response of photosynthesis in young Larix decidua Mill. — Tree Physiol. 1: 37–45, 1986.

    PubMed  Google Scholar 

  • Vats, S.K., Kumar, N., Kumar, S.: Gas exchange of response of barley and pea cultivars to altitude variation in Himalaya. — Photosynthetica 47: 41–45, 2009.

    Article  Google Scholar 

  • Weber, J.A., Jurik, T.W., Tenhunen, J.D., Gates, D.M.: Analysis of gas exchange in seedlings of Acer saccharum: integration of field and laboratory studies. — Oecologia 65: 338–347, 1985.

    Article  Google Scholar 

  • Xu, L.L., Zhang, X.Z., Shi, P.L., Li, W.H., He, Y.T.: Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. — Ecol. Model. 208: 129–134, 2007.

    Article  Google Scholar 

  • Zhang, S.B., Zhou, Z.K., Hu, H., Xu, K., Yan, N., Li, S.Y.: Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. — Forest Ecol. Manag. 212: 291–301, 2005.

    Article  Google Scholar 

  • Zhang, S.Y., Lu, G.Q., Wu, H., Shen, Z.X., Zhong, H.M., Shen, Y.G., Xu, D.Q., Ding, H.G., Hu, W.X.: [Photosynthesis of major C3 plants on Qinghai Plateau.] — Acta Bot. Sin. 34: 176–184, 1992. [in Chin.]

    Google Scholar 

  • Zhou, H.H, Chen, Y.N., Li, W.H., Chen, Y.P.: Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, northwest China. — Photosynthetica 48: 257–268, 2010.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30600085), the Major Basic Research Development Program of China (2010CB951704), the Knowledge Innovation Program of the Chinese Academy of Sciences (Kscx2-kw-n-44) and National Scientific and Technological Support Projects (2006BAC01A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Zhang.

Additional information

The author contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y.Z., Zhong, Z.M. & Zhang, X.Z. A comparative analysis of photosynthetic characteristics of hulless barley at two altitudes on the Tibetan Plateau. Photosynthetica 49, 112–118 (2011). https://doi.org/10.1007/s11099-011-0016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-011-0016-0

Additional key words

Navigation