Skip to main content
Log in

The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars

  • Original Papers
  • Published:
Photosynthetica

Abstract

Low temperature (LT) is one of the major factors that limit crop production and reduce yield. To better understand the cold-tolerance mechanism in the plantains, a sensitive cultivar Williams (Musa acuminata AAA cv. Williams) and a tolerant cultivar Cachaco (Musa paradisiaca ABB cv. Dajiao) were used. LT resulted in increased malondialdehyde (MDA) content, elevated contents of hydrogen peroxide (H2O2) and superoxide radical (O ·−2 ), and decreased photochemical efficiency (Fv/Fm) and net photosynthetic rate (P N), but cv. Cachaco showed better LT tolerance than cv. Williams. After LT treatment for 120 h, total scavenging capability (DPPH· scavenging capability) in Williams showed a significant decrease but no significant alternations was found in Cachaco. Ascorbate peroxidase (APX) and peroxidase (POD) displayed a significant increase but superoxide dismutase (SOD) showed no significant alternations and catalase (CAT) showed a significant decrease in Cachaco after 120 h of LT treatment. All the four antioxidant enzymes above showed a significant decrease in Williams after 120 h of LT treatment. Our results suggest that higher activities of APX, POD, SOD, and DPPH· scavenging capability to a certain extent can be used to explain the higher cold tolerance in the plantain, which would provide a theoretical guidance for bananas production and screening cold-resistant variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

ASC:

ascorbate

CAT:

catalase

DAB:

diaminobenzidine

DPPH· :

1,1-diphenyl-2-picrylhydrazyl

Fv/Fm :

maximum photochemical efficiency of photosystem II

g s :

stomatal conductance

H2O2 :

hydrogen peroxide

LT:

low temperature

MDA:

malondialdehyde

NBT:

nitroblue tetrazolium

O ·−2 :

superoxide radical

1O2 :

singlet oxygen

·OH:

hydroxyl radical

P N :

net photosynthetic rate

POD:

peroxidase

SOD:

superoxide dismutase

TCA:

trichloroacetic acid

References

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 673–677. Academic Press, New York 1974.

    Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bertamini, M., Muthuchelian, K., Rubinigg, M., Zorer, R., Nedunchezhian, N.: Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L. cv. Riesling). Effect of chilling nights. — Photosynthetica. 43: 551–557, 2005.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 7: 248–254, 1976.

    Article  Google Scholar 

  • Damasco, O.P., Smith, M.K., Godwin, I.D., Adkins, S.W., Smillie, R.M., Hetherington, W.E.: Micropropagated dwarf off-type Cavendish bananas (Musa spp., AAA) show improved tolerance to suboptimal temperatures. — J. Agr. Res. 48: 377–384, 1997.

    Article  Google Scholar 

  • Ebrahim, M.K.H., Vogg, G., Osman, M.N.E.H., Komor, E.: Photosynthetic performance and adaptation of sugarcane at suboptimal temperatures. — J. Plant Physiol. 153: 587–592, 1998.

    CAS  Google Scholar 

  • Elstner, E.F., Wagner, G.A., Schutz, W.: Activated oxygen in green plants in relation to stress situations. — In: Randall, D.D., Blevis, D.G., Campbell, W.H. (ed.): Current Topics Plant Biochemistry and Physiology. Vol. 7: 159–187, Univ. Missouri, Columbia 1988.

    Google Scholar 

  • Gawel, N., Jarret, R.L.: Cytoplasmic genetic diversity in bananas and plantains. — Euphytica 52: 19–23, 1991.

    Google Scholar 

  • Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase. I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Havaux, M., Barber, J., Chapman, D.J., Lannoye, R.: Changes in leaf and thylakoid membrane lipids during low-temperature adaptation of winter barley (Hordeum vulgare L.). — J. Exp. Bot. 35: 948–954, 1984.

    Article  CAS  Google Scholar 

  • Holá, D., Kutík, J., Kočová, M., Rothová, O.: Low-temperature induced changes in the ultrastructure of maize mesophyll chloroplasts strongly depend on the chilling pattern/intensity and considerably differ among inbred and hybrid genotypes. — Photosynthetica 46: 329–338, 2008.

    Article  Google Scholar 

  • Hurry, V., Huner, N., Selstam, E., Gardeström, P., Öquist, G.: Photosynthesis at low growth temperatures. — In: Raghavendra, A.S. (ed.): Photosynthesis: A Comprehensive Treatise. Pp. 238–249. Cambridge Univ. Press, Cambridge 1998.

    Google Scholar 

  • Ishitani, M., Xiong, L.M., Lee, H.J., Stevenson, B., Zhu, J.K.: HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. — Plant Cell 10: 1151–1161, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ishitani, M., Xiong, L.M., Stevenson, B., Zhu, J.K.: Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways. — Plant Cell 9: 1935–1949, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Karabal, E., Yucel, M., Oktem, H.A.: Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. — Plant Sci. 164: 925–933, 2003.

    Article  CAS  Google Scholar 

  • Kulkarni, V.M., Ganapathi, T.R.: A simple procedure for slow growth maintenance of banana (Musa spp.) embryogenic cell suspension cultures at low temperature. — Curr. Sci. 96: 1372–1374, 2009.

    Google Scholar 

  • Kumar, V., Yadav, S.K.: Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze. — Acta Physiol. Plant. 31: 261–269, 2009.

    Article  CAS  Google Scholar 

  • Kuzniak, E., Urbanek, H.: The involvement of hydrogen peroxide in plant responses to stresses. — Acta Physiol. Plant. 22: 195–203, 2000.

    Article  CAS  Google Scholar 

  • Larrauri, J.A., Sanchez-Moreno., C, Saura-Calixto, F.: Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. — J. Agr. Food Chem. 46: 2694–2697, 1998.

    Article  CAS  Google Scholar 

  • Lee, S.C., Kim, J.Y., Kim, S.H. et al.: Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. — Plant Sci. 166: 69–79, 2004.

    Article  CAS  Google Scholar 

  • Lei, T., Feng, H., Sun, X., Dai, Q.L. Zhang, F., Liang, H.G., Lin H.H.: The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. — Plant Growth Regul. 60: 35–42, 2010.

    Article  CAS  Google Scholar 

  • Moller, I.M.: Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 561–591, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., Foyer, C.H.: Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? — Ann. Bot. 89: 841–850, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Peng, C.L., Chen, S.W., Lin, Z.F., Lin, G.Z.: [Detection of antioxidative capacity in plants by scavenging organic free radical DPPH.] — Prog. Biochem. Biophys. 27: 658–661, 2000. [In Chin.]

    CAS  Google Scholar 

  • Pinedo, M.L., Hernández, G.F., Conde, R.D., Tognetti, J.A.: Effect of low temperature on the protein metabolism of wheat leaves. — Biol. Plant. 43: 363–367, 2000.

    Article  CAS  Google Scholar 

  • Putter, J.: Peroxidases. — In: Bregmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 685–690. Academic Press, New York 1974.

    Google Scholar 

  • Robinson, J.C.: Bananas and plantains. — Crop Production Science in Horticulture Series No 5. CABI. Pp. 1–238. Wallingford 1996.

  • Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gómez, M., Del Río, L.A., Sandalio, L.M.: Cadmium-induced subcellular accumulation of O ·−2 and H2O2 in pea leaves. — Plant Cell Environ. 27: 1122–1134, 2004.

    Article  CAS  Google Scholar 

  • Ronquist, G., Waldenström, A.: Imbalance of plasma membrane ion leak and pump relationship as a new aetiological basis of certain disease states. — J. Int. Med. 254: 517–526, 2003.

    Article  CAS  Google Scholar 

  • Rowe, P.: Breeding an intractable crop. Bananas. — In: Rachie, K.O., Lyman, J.M. (ed.): Genetic Engineering for Crop Improvement. Working Papers. Pp. 66–84. Rockefeller Foundation, Washington 1981.

    Google Scholar 

  • Shao, H.B., Chu, L.Y., Shao, M.A., Jaleel, C.A., Mi, H.M.: Higher plant antioxidants and redox signaling under environmental stresses. — Compt. Rend. Biol. 331: 433–441, 2008.

    Article  CAS  Google Scholar 

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. — Plant Physiol. 140: 613–623, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Smillie, R.M., Hetherington, S.E., He, J., Nott, R.: Photoinhibition at chilling temperatures. — Aust. J. Plant Physiol. 15: 207–222, 1988.

    Article  Google Scholar 

  • Smirnoff, N.: Tansley review. 52. The role of active oxygen in the responses of plants to water deficit and desiccation. — New Phytol. 125: 27–58, 1993.

    Article  CAS  Google Scholar 

  • Sun, X., Yuan, S., Lin, H.H.: Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. — Z. Naturforsch. C: J. Biosci. 61: 245–250, 2006.

    CAS  Google Scholar 

  • Sundar, D., Chaitanya, K.V., Jutur, P.P., Reddy, A.R.: Low temperature-induced changes in antioxidative metabolism in rubber-producing shrub, guayule (Parthenium argentatum Gray). — Plant Growth Regul. 44: 175–181, 2004.

    Article  CAS  Google Scholar 

  • Turner, D.W., Lahav, E.: The growth of banana plants in relation to temperature. — Aust. J. Plant Physiol. 10: 43–53, 1983.

    Article  Google Scholar 

  • Zeng, X.Q., Chow, W.S., Su, L.J., Peng, X.X., Peng, C.L.: Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. — Physiol. Plant. 138: 215–225, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by Guangxi Natural Science Foundation Program (No.0991078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Peng.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Zhang, J.Z., Chow, W.S. et al. The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica 49, 201–208 (2011). https://doi.org/10.1007/s11099-011-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-011-0012-4

Additional key words

Navigation