Skip to main content
Log in

Photosynthetic traits of Carex cinerascens in flooded and nonflooded conditions

  • Original Papers
  • Published:
Photosynthetica

Abstract

Gas exchange of Carex cinerascens was carried out in Swan Islet Wetland Reserve (29°48′ N, 112°33′ E). The diurnal photosynthetic course of C. cinerascens in the flooded and the nonflooded conditions were analyzed through the radial basis function (RBF) neural network approach to evaluate the influences of environmental variables on the photosynthetic activity. The inhibition of photosynthesis induced by soil flooding can be attributed to the reduced stomatal conductance (g s), the deficiency of Rubisco regeneration and decreased chlorophyll (Chl) content. As revealed by analysis of artificial neural network (ANN) models, g s was the dominant factor in determining the photosynthesis response. Weighting analysis showed that the effect of water pressure deficit (VPD) > air temperature (T) > CO2 concentration (C a) > air humidity (RH) > photosynthetical photon flux density (PPFD) for the nonflooded model, whereas for the flooded model, the factors were ranked in the order VPD > C a > RH > PPFD > T. The different photosynthetic response of C. cinerascens found between the nonflooded and flooded conditions would be useful to evaluate the flood tolerance at plant species level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANN:

artificial neural network

AQY:

apparent quantum yield

C a :

CO2 concentration

C i :

intercellular CO2 concentration

CE:

carboxylation efficiency

Chl:

chlorophyll

E :

transpiration rate

ETR:

electron transport rate

Fm :

maximum fluorescence of dark state

Fm′:

maximum fluorescence of light-adapted state

Fo :

minimum fluorescence of dark state

Fo′:

minimum fluorescence of light-adapted state

Fs :

steady-state fluorescence

Fv :

variable fluorescence

Fv/Fm :

maximum quantum yield of PSII

Fv/Fo :

the ratio of variable fluorescence to minimum fluorescence

g s :

stomatal conductance

Jmax :

the light saturated rate of electron transport

Lc:

light compensation point

Ls:

light saturation point

P N :

net photosynthetic rate

PAR:

photosynthetically active radiation

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

qN :

non-photochemical quenching coefficient

qP :

photochemical quenching coefficient

R D :

dark respiration rate

R day :

day respiration

RBF:

radial basis function

RH:

air humidity

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

T:

air temperature

Tl :

leaf temperature

Vcmax :

maximum rate of carboxylation

VPD:

water-pressure deficit

WUE:

water-use efficiency

ΦPSII :

effective quantum yield of PSII

Γ:

CO2 compensation point

References

  • Balls, G.R., Palmer-Brown, D., Sanders, G.E.: Investigating microclimatic influences on ozone injury in clover (Trifolium subterraneum) using artificial neural networks. — New Phytol. 132: 271–286, 1996.

    Article  CAS  Google Scholar 

  • Baruch, Z.: Responses to drought and flooding in tropical forage grasses. II. Leaf water potential, photosynthesis rate and alcohol dehydrogenase activity. — Plant Soil 164: 97–105, 1994.

    Article  CAS  Google Scholar 

  • Bianchini, M., Frasconi, P., Gori, M.: Learning without local minima in radial basis function networks. — IEEE Trans. Neural Networks 6: 749–756, 1995.

    Article  CAS  Google Scholar 

  • Bradford, K.J.: Effects of soil flooding on leaf gas exchange of tomato plants. — Plant Physiol. 73: 475–479, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Bragina, T.V., Ponomareva, Y.V., Drozdova, I.S., Grinieva, G.M.: Photosynthesis and dark respiration in leaves of different ages of partly flooded maize seedlings. — Russ. J. Plant Physiol. 51: 342–347, 2004.

    Article  CAS  Google Scholar 

  • Brown, C.E., Pezeshki, S.R.: A study on waterlogging as a potential tool to control Ligustrum sinense populations in western Tennessee. — Wetlands 20: 429–437, 2000.

    Article  Google Scholar 

  • Chen, H.J., Qualls, R.G., Blank, R.R.: Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. — Aquat. Bot. 82: 250–268, 2005.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S.: Modeling of photosynthetic responses to environmental conditions. — In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology. II.Water Relation and Carbon Assimilation. Pp. 549–587. Springer-Verlag, Berlin — Heidelberg — New York 1982.

    Google Scholar 

  • Farquhar, G.D., von Caemmerer, S.V., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92. 1989.

    CAS  Google Scholar 

  • Gravatt, D.A., Kirby, C.J.: Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. — Tree Physiol. 18: 411–417, 1998.

    PubMed  Google Scholar 

  • Huntingford, C., Cox, P.M.: Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment. — Ecol. Model. 97: 217–246, 1997.

    Article  Google Scholar 

  • Jeong, K.S., Joo, G.J., Kim, H.W., Ha, K., Recknagel, F.: Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. — Ecol. Model. 146: 115–129, 2001.

    Article  CAS  Google Scholar 

  • Kozlowski, T.T.: Plant responses to flooding of soil. — Bioscience 34: 162–167, 1984.

    Article  Google Scholar 

  • Li, M., Yang, D., Li, W.: Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding — Photosynthetica 45: 222–228, 2007.

    Article  Google Scholar 

  • Liao, C.T., Lin, C.H.: Effect of flooding stress on photosynthetic activities of Momordica charantia. — Plant Physiol. Biochem. 32: 479–485, 1994.

    Google Scholar 

  • Lichtenthaler, H.K.: Chlorophyll. and carotenoids, pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Macek, P., Rejmánková, E., Houdková, K.: The effect of longterm submergence on functional properties of Eleocharis cellulosa Torr. — Aquat. Bot. 84: 251–258, 2006.

    Article  Google Scholar 

  • Marshall, B., Biscoe, P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Derivation. — J. Exp. Bot. 31: 29–39, 1980.

    Article  CAS  Google Scholar 

  • Mauchamp, A, Méthy, M.: Submergence-induced damage of photosynthetic apparatus in Phragmites australis. — Environ. Exp. Bot. 51: 227–235, 2004.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • McKevlin, M.R., Hook, D.D., McKee, W.H.: Growth and nutrient use efficiency of water tupelo seedlings in flooded and well drained soil. — Tree Physiol. 15: 753–758, 1995.

    PubMed  Google Scholar 

  • Melesse, A.M., Hanley, R.S.: Artificial neural network application for multi-ecosystem carbon flux simulation — Ecol. Model. 189: 305–314, 2005.

    Article  Google Scholar 

  • Mielke, M.S., de Almeida, A.-A.F., Gomes, F.P., Aguilar, M.A.G., Mangabeira, P.A.O.: Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. — Environ. Exp. Bot. 50: 221–231, 2003.

    Article  CAS  Google Scholar 

  • Mishra, S.K., Patro, L., Mohapatra, P.K., Biswal, B: Response of senescing rice leaves to flooding stress. — Photosynthetica 46: 315–317, 2008.

    Article  CAS  Google Scholar 

  • Mommer, L., Pons, T.L., Visser, E.J.W.: Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study. — J. Exp. Bot. 57: 283–290, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Pallas, J.E., Kays, S.J.: Inhibition of photosynthesis by ethylene — a stomatal effect. — Plant Physiol. 70: 598–601, 1982.

    Article  CAS  PubMed  Google Scholar 

  • Park, J., Sandberg, I.W.: Universal approximation using radial basis functions network. — Neural Computation 3: 246–257, 1991.

    Article  Google Scholar 

  • Pezeshki, S.R.: Responses of baldcypress (Taxodium distichum) seedlings to hypoxia: leaf protein content, ribulose-1, 5-bisphosphate carboxylase/oxygenase activity and photosynthesis. Photosynthetica 30: 59–68, 1994.

    CAS  Google Scholar 

  • Pezeshki, S.R.: Wetland plant responses to soil flooding. — Environ. Exp. Bot. 46: 299–312, 2001.

    Article  Google Scholar 

  • Pezeshki, S.R, Chambers, J.L.: Responses of cherrybark oak seedlings to short-term flooding. — Forest Sci. 31: 760–771, 1985.

    Google Scholar 

  • Pezeshki, S.R., Pardue, J.H., DeLaune, R.D.: The influence of soil oxygen deficiency on alcohol dehydrogenase activity, root porosity, ethylene production and photosynthesis in Spartina patens. — Environ. Exp. Bot. 33: 565–573, 1993.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F.N.: Effects of flooding on soils. — In: Kozlowski, T.T.(ed.): Flooding and Plant Growth. Pp. 1–44. Academic Press, Orlando- San Diego — San Francisco — New York — London — Toronto — Montreal — Sydney — Tokyo — São Paulo 1984.

    Google Scholar 

  • Poorter, H.: Do slow-growing species and nutrient-stressed plants respond relatively strongly to elevated CO2? — Glob. Change Biol. 4: 693–697, 1998.

    Article  Google Scholar 

  • Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer- Verlag, Berlin 1994.

    Google Scholar 

  • Taylor, G.E., Gunderson, C.A.: Physiological site of ethylene effects on carbon dioxide assimilation in Glycine max. L. Merr. — Plant Physiol. 86: 85–92, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Wasserman, P.D.: Neural Computing: Theory and Practice, Van Nostrand Reinhold, New York 1989.

    Google Scholar 

  • Yamori, W., Noguchi, K., Terashima, I.: Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. — Plant Cell Environ. 28: 536–547, 2005.

    Article  CAS  Google Scholar 

  • Yordanova, R.Y., Alexieva, V.S., Popova, L.P.: Influence of root oxygen deficiency on photosynthesis and antioxidant status in barley plants. — Russ. J. Plant Physiol. 50: 163–167, 2003.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financed by Innovation Key project of CAS (O754551B 03), Innovation Key project of CAS (KSCX2-YW-Z-1023-5), grant (30700083) from Natural Sciences Foundation of China and project (CN2357) funded by WWF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Hou, G., Yang, D. et al. Photosynthetic traits of Carex cinerascens in flooded and nonflooded conditions. Photosynthetica 48, 370–376 (2010). https://doi.org/10.1007/s11099-010-0048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-010-0048-x

Additional key words

Navigation