Skip to main content
Log in

Comparison of parameters estimated from A/C i and A/C c curve analysis

  • Original Papers
  • Published:
Photosynthetica

Abstract

The parameters estimated from traditional A/C i curve analysis are dependent upon some underlying assumptions that substomatal CO2 concentration (C i) equals the chloroplast CO2 concentration (C c) and the C i value at which the A/C i curve switches between Rubisco- and electron transport-limited portions of the curve (C i-t) is set to a constant. However, the assumptions reduced the accuracy of parameter estimation significantly without taking the influence of C i-t value and mesophyll conductance (g m) on parameters into account. Based on the analysis of Larix gmelinii’s A/C i curves, it showed the C i-t value varied significantly, ranging from 24 Pa to 72 Pa and averaging 38 Pa. t-test demonstrated there were significant differences in parameters respectively estimated from A/C i and A/C c curve analysis (p<0.01). Compared with the maximum ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), the maximum electron transport rate (Jmax) and Jmax/Vcmax estimated from A/C c curve analysis which considers the effects of g m limit and simultaneously fits parameters with the whole A/C c curve, mean Vcmax estimated from A/C i curve analysis (Vcmax-C i) was underestimated by 37.49%; mean Jmax estimated from A/C i curve analysis (Jmax-C i) was overestimated by 17.8% and (Jmax-C i)/(Vcmax-C i) was overestimated by 24.2%. However, there was a significant linear relationship between Vcmax estimated from A/C i curve analysis and Vcmax estimated from A/C c curve analysis, so was it Jmax (p<0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

photosynthesis rate

A c :

Rubisco-limited rates of carboxylation

A j :

electron transport-limited rates of carboxylation

A/Cc curve analysis:

net assimilation rate of CO2-chloroplast CO2 concentration

A/Ci curve analysis:

net assimilation rate of CO2-intercellular CO2 concentration

c :

scaling constant

C c :

chloroplast CO2 concentration

Cc-t:

chloroplast CO2 concentration transitional point

C i :

substomatal CO2 concentration

Ci-t:

intercellular CO2 concentration transitional point

FvCB model:

Farquhar-von-Caemmerer-Berry model of photosynthesis

g m :

mesophyll conductance

J:

electron transport rate

Jmax :

maximum electron transport rate

Jmax-C c :

Jmax estimated from A/C c curve analysis

Jmax-C i :

Jmax estimated from A/C i curve analysis

Kc :

the Michaelis-Menten constants of Rubisco activity for CO2

Ko :

the Michaelis-Menten constants of Rubisco activity for O2

O :

the O2 partial pressure in intercellular spaces

PPFD:

photosynthetic photon flux density

R:

gas constant

R D :

dark respiration

Vc :

the rate of carboxylation of Rubisco

Vcmax :

maximum ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate

Vcmax-C c :

Vcmax estimated from A/C c curve analysis

Vcmax-C i :

Vcmax estimated from A/C i curve analysis

Γ:

the CO2 compensation point in the absence of R D

ΔHa :

enthalpy of activation

ΔHd :

enthalpy of deactivation

ΔS:

entropy

References

  • Aalto, T., Juurola, E.: A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. — Plant Cell Environ. 25: 1399–1409, 2002.

    Article  Google Scholar 

  • Amthor, J.S.: Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. — Global Change Biol. 1: 243–274, 1995.

    Article  Google Scholar 

  • Bazzaz, F.A.: The response of nature ecosystems to the rising global CO2 levels. — Annu. Rev. Ecol. Syst. 21: 167–196, 1990.

    Article  Google Scholar 

  • Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis, A.R.,Jr, Long, S.P.: Improved temperature response functions for models of Rubisco-limited photosynthesis. — Plant Cell Environ. 24: 253–259, 2001.

    Article  CAS  Google Scholar 

  • Bernacchi, C.J., Portis, A.R., Nakano, H., von Caemmerer, S., Long, S.P.: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. — Plant Physiol. 130: 1992–1998, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi, C.J., Pimentel, C., Long, S.P.: In vivo temperature response functions of parameters required to model RuBPlimited photosynthesis. — Plant Cell Environ. 26: 1419–1430, 2003.

    Article  CAS  Google Scholar 

  • Bunce, J.A.: Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3 species: temperature dependence of parameters of a biochemical photosynthesis model. — Photosynth. Res. 63: 59–67, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Centritto, M., Loreto, F., Chartzoulakis, K.: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. — Plant Cell Environ. 26: 585–594, 2003.

    Article  Google Scholar 

  • Curtis, P.S., Vogel, C.S., Pregitzer, K.S., Zak, D.R., Teeri, J.A.: Interacting effects of soil fertility and atmospheric CO2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinier. — New Phytologist 129: 253–263, 1995.

    Article  Google Scholar 

  • De Pury, D.G.G., Farquhar, G.D.: Simple scaling of photosynthesis from leaves to simple canopies without the errors of big-leaf models. — Plant Cell Environ. 20: 537–557, 1997.

    Article  Google Scholar 

  • Dubois, J.J.B., Fiscus, E.L., Booker, F.L., Flowers, M.D., Reid, C.D.: Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. — New Phytol. 176: 402–414, 2007.

    Article  PubMed  Google Scholar 

  • Ethier, G.J., Livingston, N.J.: On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. — Plant Cell Environ. 27: 137–153, 2004.

    Article  CAS  Google Scholar 

  • Evans, J.R., Loreto, F.: Acquisition and diffusion of CO2 in higher plant leaves. — In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (ed.): Photosynthesis: Physiology and Metabolism. Pp. 9–51. Kluwer Acad. Publishers, Dordrecht 2000.

    Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Field, C.B., Avissar, R.: Bi-directional interactions between the biosphere and the atmosphere. Introduction. — Global Change Biol. 4: 459–460, 1998.

    Article  Google Scholar 

  • Gaastra, P.: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. — Mededel. Landbouwhogesch. Wageningen 59: 1–68, 1959.

    Google Scholar 

  • Harley, P.C, Sharkey, T.D.: An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. — Photosyn. Res. 27: 169–178, 1991.

    CAS  Google Scholar 

  • Harley, P.C., Loreto, F., DiMarco, G., Sharkey, T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. — Plant Physiology 98: 1429–1436, 1992a.

    Article  CAS  PubMed  Google Scholar 

  • Harley, P.C., Thomas, R.B., Reynolds, J.F., Strain, B.R.: Modeling photosynthesis of cotton grown in elevated CO2. — Plant Cell Environ. 15: 271–282, 1992b.

    Article  CAS  Google Scholar 

  • Keeling, C.D., Bacastow, R.B., Carter, A.F., Piper, S.C., Whorf, T.P., Heimann, M., Mook, W.G., Roeloffzen, H.: A threedimensional model of atmospheric CO2 transport based on observed winds. — In: Peterson, D.H. (ed.): Aspects of climate Variability in the Pacific and the Western Americas. Pp. 55: 165–236. J. Geophys. Res., Washington D.C. 1989.

    Google Scholar 

  • Larcher, W.: Physiological Plant Ecology. 2nd Ed. — Springer-Verlag, Berlin — Heidelberg — New York 1980.

    Google Scholar 

  • Leuning, R.: Temperature dependence of two parameters in a photosynthesis model. — Plant Cell Environ. 25: 1205–1210, 2002.

    Article  CAS  Google Scholar 

  • Lloyd, J., Farquhar, G.D.: The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. — Functional Ecology 10: 4–32, 1996.

    Article  Google Scholar 

  • Long, S.P., Bernacchi, C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. — J. Exp. Bot. 54: 2393–2401, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Long, S.P.: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? — Plant Cell Environ. 14: 729–739, 1991.

    Article  CAS  Google Scholar 

  • Loreto, F., Harley, P.C., Marco, G.D., Sharkey, T.D.: Estimation of mesophyll conductance to CO2 flux by three different methods. — Plant Physiol. 98: 1437–1443, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Manter, D.K., Kerrigan, J.: A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. — J. Exp. Bot. 55: 2581–2588, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Medlyn, B.E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P.C., Kirschbaum, M.U.F.; Le Roux, X.; Montpied, P.; Strassemeyer, J.; Walcroft, A.; Wang, K.; Loustau, D.: Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. — Plant Cell Environ. 25: 1167–1179, 2002.

    Article  CAS  Google Scholar 

  • Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore, B., Vorosmarty, C.J., Schloss, A.L.: Global climate change and terrestrial net primary production. — Nature 363: 234–240, 1993.

    Article  CAS  Google Scholar 

  • Miao, Z.W., Xu, M., Lathrop, R.G., Jr., Wang, Y.F.: Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation rate,potential light saturated electron transport rate and leaf dark respiration. — Plant Cell Environ. 32: 109–122, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, J.F.B., Manabe, S., Meleshiko, V., Tokioka, T.: Equilibrium climate change and its implications for the future. — In: Houghton, J.T., Jenkins, G.J., Ephraums, J.J. (ed.): Climate Change. Pp. 131–170. Cambridge Univ. Press, New York 1990.

    Google Scholar 

  • Monti, A., Brugnoli, E., Scartazza, A., Amaducci, M.T.: The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). — J. Exp. Bot. 57: 1253–1262, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Niinemets, U, Cescatti, A; Rodeghiero, M; Tosens, T: Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broadleaved species. — Plant Cell Environ. 28: 1552–1566, 2005.

    Article  Google Scholar 

  • Niinemets, U., Díaz-Espejo, A., Flexas, J., Galmés, J., Warren, C.R.: Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. — J. Exp. Bot. 60: 2249–2270, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Pitman, A.J.: The evolution of, and revolution in, land surface schemes designed for climate models. — Int. J. Climatol. 23: 479–510, 2003.

    Article  Google Scholar 

  • Schlesinger, M.E., Mitchell, J.F.B.: Model projections of the equilibrium climate response to increased carbon dioxid. In: MacCracken, M.C., Luther, F.M. (ed.): Projecting the Climate Effect of Increasing Carbon Dioxid. Pp. 80–147. Carbon Dioxide Res. Div., Washington 1985.

    Google Scholar 

  • Sellers, P.J., Bounoua, L., Collatz, G.J., Randall, D.A., Dazlich, D.A., Los, S.O., Berry, J.A., Fung, I., Tucker, C.J., Field, C.B., Jensen, T.G.: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. — Science 271: 1402–1406, 1996.

    Article  CAS  Google Scholar 

  • Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G., Berry, J.A., Collatz, G.J., Denning, A.S., Mooney, H.A., Nobre, C.A., Sato, N., Field, C.B., Henderson-Sellers, A.: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. — Science 275: 502–509, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T.D.: Photosynthesis in intact leaves of C3 plant: Physics, physiology and rate limitations. — Bot. Rev. 51: 53–105, 1985.

    Article  Google Scholar 

  • Thornton, P.E., Law, B.E., Gholz, H.L., Clark, K.L., Falge, E., Ellsworth, D.S., Goldstein, A.H., Monson, R.K., Hollinger, D., Falk, M., Chen, J., Sparks, J.P.: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. — Agri. Forest Meteorol. 113: 185–222, 2002.

    Article  Google Scholar 

  • von Caemmerer, S.: Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Canberra 2000.

    Google Scholar 

  • Wang, Y.P., Jarvis, P.G.: Description and validation of an array model — MAESTRO. — Agri. Forest Meteorol. 51: 257–280, 1990.

    Article  Google Scholar 

  • Waston, R.T., Rodhe, H., Oeschger, H., Siegenthaler, U.: Greenhouse gases and aerosols. — In: Houghton, J. T., Jenkins, G. J., Ephraums, J. J. (ed.): Climate Change. Pp. 282–310. Cambridge Univ. Press, New York 1990.

    Google Scholar 

  • Wohlfahrt, G., Bahn, M., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., Tappeiner, U., Cernusca, A.: Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. — Plant Cell Environ. 22: 1281–1296, 1999.

    Article  Google Scholar 

  • Woodward, F.I.: Climate and plant Distribution. Cambridge University press, Cambridge — London — New York — New Rochelle — Melbourne — Sydney 1987.

    Google Scholar 

  • Woodward, F.I, Smith, T.M., Emanuel, W.R.: A global land primary productivity and phytogeography model. — Global Biogeochemical Cycles 9: 471–490, 1995.

    Article  CAS  Google Scholar 

  • Wullschleger, S.D.: Biochemical limitations to carbon assimilation in C3 plants — a retrospective analysis of the A/Ci curves from 109 species. — J. Exp. Bot. 44: 907–920, 1993.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate anonymous reviewers and the personnel of Hu Zhong Nature Preservation Region for their hard work and help. This research was jointly supported by the R&D Special Fund for Public Welfare Industry (Meteorology)(GYHY(QX) 2007-6-21), National Key Basic Research Specific Foundation (2004CB418507-1), National Natural Science Foundation of China (40625015) and the Chinese Academy of Sciences knowledge innovation project (KZCX2-YW-432-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, W., Zhou, G.S., Jia, B.R. et al. Comparison of parameters estimated from A/C i and A/C c curve analysis. Photosynthetica 48, 323–331 (2010). https://doi.org/10.1007/s11099-010-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-010-0042-3

Additional key words

Navigation