Skip to main content

Advertisement

Log in

Short-term dynamics of stomatal response to sudden increase in CO2 concentration in maize supplied with different amounts of water

  • Original Papers
  • Published:
Photosynthetica

Abstract

Environmental factors that influence stomatal conductance (g s) interact through a complex network of signal transduction and have therefore highly interdependent effect.

In the present study we examined how plant water status affects stomatal sensitivity to the change of CO2 concentration ([CO2]). We investigated the short-term dynamic of stomatal response to a sudden [CO2] increase (from 400 to 700 µmol(CO2) mol−1) in maize supplied with different amounts of water (resulting ψw = −0.35, −0.52 and −0.75 MPa). Gas exchange measurements were performed in short logging intervals and the response was monitored under two different levels of water vapour pressure deficit (VPD) of 1 and 2 kPa in order to observe the impact of air humidity. Generalized logistic curves were fitted to standardized stomatal response data, which enabled us to objectively estimate the level (relative decrease of g s) and the dynamics of the response.

Soil water stress and high VPD significantly decreased relative stomatal closure in response to [CO2] rise, but simultaneously accelerated stomatal response to [CO2], as revealed by shorter half life (t1/2). VPD significantly affected the response of well-watered plants. In contrast, a fast stomatal reaction of water-deprived plants was predetermined by a low xylem water potential (ψw) of the leaf and the influence of air humidity was minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

[CO2]:

CO2 concentration

g s :

stomatal conductance

t1/2 :

half life

VPD:

leaf to air vapour pressure deficit

ψw :

plant xylem water potential

References

  • Ainsworth, E.A., Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. — Plant Cell Environ. 30:258–270, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Assmann, S.M., Grantz, D.A.: The magnitude of the stomatal response to blue-light - modulation by atmospheric humidity. — Plant Physiol. 93: 701–709, 1990.

    Article  PubMed  Google Scholar 

  • Barradas, V.L., Jones, H.G., Clark, J.A.: Stomatal responses to changing irradiance in Phaseolus vulgaris L. — J. Exp. Bot. 45: 931–936, 1994.

    Article  CAS  Google Scholar 

  • Barrs, H.D.: Cyclic variations in stomatal aperture, transpiration and leaf water potential under constant environmental conditions. — Annu. Rev. Plant Physiol. 22: 223–236, 1971.

    Article  Google Scholar 

  • Brearley, J., Venis, M.A., Blatt, M.R.: The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. — Planta 203: 145–154, 1997.

    Article  CAS  Google Scholar 

  • Buckley, T.N., Mott, K.A., Farquhar, G.D.: A hydromechanical and biochemical model of stomatal conductance. — Plant Cell Environ. 26: 1767–1785, 2003.

    Article  CAS  Google Scholar 

  • Bunce, J.A.: Does transpiration control stomatal responses to water vapour pressure deficit? — Plant Cell Environ. 20: 131–135, 1997.

    Article  Google Scholar 

  • Cousins, A.B., Baroli I., Badger, M.R., Ivakov, A., Lea, P.J., Leegood, R.C., von Caemmerer, S.: The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. — Plant Physiol. 145: 1006–1017, 2007.

    Article  CAS  PubMed  Google Scholar 

  • de Araujo, A.C., Kruijt, B., Nobre, A.D., Dolman, A.J., Waterloo, M.J., Moors, E.J., de Souza, J.S.: Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient. — Ecol. Appl. 18: 1406–1419, 2008.

    Article  PubMed  Google Scholar 

  • Del Pozo, A., Perez, P., Morcuende, R., Alonso, A., Martinez-Carrasco, R.: Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply in a Mediterranean environment. — Plant Sci. 169: 908–916, 2005.

    Article  Google Scholar 

  • Dzikiti, S., Steppe, K., Lemeur, R., Milford, J.R.: Whole-tree level water balance and its implications on stomatal oscillations in orange trees [Citrus sinensis (L.) Osbeck] under natural climatic conditions. — J. exp. Bot. 58: 1893–1901, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Frechilla, S., Talbott, L.D., Zeiger, E.: The CO2 response of Vicia guard cells acclimates to growth environment. — J. exp Bot. 53: 545–550, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hanstein, S.M., Felle, H.H.: CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. — Plant Physiol. 130: 940–950, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Herppich, W.B., von Willert, D.J.: Dynamic changes in leaf bulk water relations during stomatal oscillations in mangrove species - continuous analysis using a dewpoint hygrometer. — Physiol. Plant. 49, 479–485: 1995.

    Article  Google Scholar 

  • Huxman, T.E., Monson, R.K.: Stomatal responses of C-3, C-3-C-4 and C-4 Flaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour. — Plant Cell Environ. 26: 313–322: 2003.

    Article  CAS  Google Scholar 

  • Kaiser, H., Kappen, L.: Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism. — J. exp. Bot. 52: 1303–1313, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Kamakura, M., Furukawa, A.: Responses of individual stomata in Ipomoea pes-caprae to various CO2 concentrations. — Phys. Plantarum 132: 255–261, 2008.

    Article  CAS  Google Scholar 

  • Klute, A.: Water retention: Laboratory Methods. — In: Klute, A. (ed.): Methods of Soil Analysis. Part 1. 2nd Ed. Pp. 635–662. American Society of Agronomy, Madison 1986.

    Google Scholar 

  • Lawson, T., Lefebvre, S., Baker, N.R., Morison, J.I.L., Raines, C.A.: Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. — J. Exp. Bot. 59: 3609–3619, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Leymarie, J., Lasceve, G., Vavasseur, A.: Interaction of stomatal responses to ABA and CO2 in Arabidiposis thaliana. — Aust. J. Plant Physiol. 25: 785–791, 1998.

    Article  CAS  Google Scholar 

  • Li, S., Assmann, S.M., Albert, R.: Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. — PLoS Biol. 4: 1732–1748, 2006.

    Article  CAS  Google Scholar 

  • Maherali, H., Johnson, H.B., Jackson, R.B.: Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C-3/C-4 grassland. — Plant Cell Environ. 26: 1297–1306, 2003.

    Article  Google Scholar 

  • Morison, J.I.L.: Intercellular CO2 concentration and stomatal response to CO2. — In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (ed.): Stomatal Function. Pp. 229–251. Stanford University Press, Stanford 1987.

    Google Scholar 

  • Mott, K.A.: Do stomata respond to CO2 concentrations other than intercellular? — Plant Physiol. 86: 200–203, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Mott, K.A.: Sensing of atmospheric CO2 by plants. — Plant Cell Environ. 13: 731–737, 1990.

    Article  CAS  Google Scholar 

  • Motulsky, H., Christopoulos, A.: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. — Oxford Univ. Press, Cary 2004.

    Google Scholar 

  • Pepin, S., Livingston, N.J.: Rates of stomatal opening in conifer seedlings in relation to air temperature and daily carbon gain. — Plant Cell Environ. 20: 1462–1472, 1997.

    Article  Google Scholar 

  • Pfanz, H., Vodnik, D., Wittmann, C., Aschan, G., Raschi, A.: Plants and geothermal CO2 exhalations. Survival in and adaptation to a high CO2 environment. — In: Esser, K., Lüttge, U., Kadreit, J.W., Beyschlag, W. (ed.): Progress in Botany 65. Pp. 499–538. Springer-Verlag, Berlin - Heidelberg 2004.

    Google Scholar 

  • Powles, J.E., Buckley, T.N., Nicotra, A.B., Farquhar, G.D.: Dynamics of stomatal water relations following leaf excision. — Plant Cell Environ. 29: 981–992, 2006.

    Article  PubMed  Google Scholar 

  • Raschke, K.: Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. — Planta 125: 243–259, 1975

    Article  CAS  Google Scholar 

  • Raschke, K., Hanebuth, W.F., Farquhar, G.D.: Relationship between stomatal conductance and light intensity in leaves of Zea mays L. derived from experiments using the mesophyll as shade. — Planta 139: 73–77, 1978.

    Article  Google Scholar 

  • Šantrůček, J., Sage, R.F.: Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. — Aust. J. Plant Physiol. 23: 467–478, 1996.

    Article  Google Scholar 

  • Scholander, P.F., Hemmingsen, E.A., Hammel, H.T., Bradstreet, E.D.P.: Hydrostatic pressure + osmotic potential in leaves of mangroves + some other plants. — Proc. Nat. Acad. Sci. 52: 119–125, 1964.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., Waner, D.: Guard cell signal transduction. — Annu. Rev. Plant Physiol. 52, 627–658, 2001.

    Article  CAS  Google Scholar 

  • Sharkey, T.D., Raschke, K.: Separation and measurement of direct and indirect effects of light on stomata. — Plant Physiol. 68: 33–40, 1981.

    Article  PubMed  Google Scholar 

  • Steppe, K., Dzikiti, S., Lemeur, R., Milford, J. R.: Stomatal oscillations in orange trees under natural climatic conditions. — Ann. Bot. 97: 831–835, 2006.

    Article  PubMed  Google Scholar 

  • Talbott, L.D., Rahveh, E., Zeiger, E.: Relative humidity is a key factor in the acclimation of the stomatal response to CO2. — J. Exp. Bot. 54: 2141–2147, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Vavasseur, A., Raghavendra, A.S.: Guard cell metabolism and CO2 sensing. — New Phytol. 165: 665–682, 2005.

    Article  CAS  PubMed  Google Scholar 

  • West, J.D., Peak, D., Peterson, J.Q., Mott, K.A.: Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images. — Plant Cell Environ. 28: 633–641, 2005.

    Article  Google Scholar 

  • Ye, Z.-P., Yu, Q.: A coupled model of stomatal conductance and photosynthesis for winter wheat. — Photosynthetica 46: 637–640, 2008.

    Article  Google Scholar 

  • Young, J.J., Mehta, S., Israelsson, M., Godoski, J., Grill, E., Schroeder, J.I.: CO2 signalling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. — Proc. Nat. Acad. Sci. 103: 7506–7511, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Q., Zhang, Y.G., Liu, Y.F., Shi, P.L.: Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. — Ann. Bot. 93: 435–441, 2004.

    Article  PubMed  Google Scholar 

  • Zhu, J., Talbott, L.D., Jin, X., Zeiger, E.: The stomatal response to CO2 is linked to changes in guard cell zeaxanthin. — Plant Cell Environ. 21: 813–820, 1998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hladnik.

Additional information

Acknowledgements: The work was supported by Research Programme P4-0085 of the Ministry of Science, Education and Sport of Slovenia, and by the grant MR 1000-05-310048 (JH) ARRS. The authors would like to thank Pioneer Slovenia for providing the seed material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hladnik, J., Eler, K., Kržan, K. et al. Short-term dynamics of stomatal response to sudden increase in CO2 concentration in maize supplied with different amounts of water. Photosynthetica 47, 422–428 (2009). https://doi.org/10.1007/s11099-009-0065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-009-0065-9

Additional keywords

Navigation