Skip to main content
Log in

Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice

  • Brief Communication
  • Published:
Photosynthetica

Abstract

Growth, photosynthetic gas exchange, and chlorophyll fluorescence characteristics were investigated in wild type (WT) and Cd-sensitive mutant rice (Oryza sativa L.) plants using 50 µM Cd treatment for 12 d followed by a 3-d recovery. Under Cd stress, net dry mass and pigment contents were significantly lower in the mutant plants than in the WT. The mutant had lower net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) than WT rice, however, it had higher intercellular CO2 concentration (C i), indicating that non-stomatal factors accounted for the inhibition of P N. Maximal photochemical efficiency of photosystem 2 (Fv/Fm), effective quantum yield of PS2 (ΦPS2), and photochemical quenching (qP) decreased much in the mutant under Cd stress. Cd content in roots and leaves of the mutant was significantly higher than those in the WT. Hence Cd toxicity was associated with the marked increases in Cd contents of plant tissue. After the recovery for 3 d, the WT rice had higher capacity to recover from Cd injury than the mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

C i :

intercellular CO2 concentration

Car:

carotenoid

Chl:

chlorophyll

DM:

dry mass

E :

transpiration rate

FM:

fresh mass

Fm :

maximal Chl fluorescence yield

F0 :

minimum fluorescence yield

Fv :

variable Chl fluorescence

Fv/Fm :

maximal photochemical efficiency

g s :

stomatal conductance to water vapour

P N :

net photosynthetic rate

PPFD:

photosynthetic photon flux density

qN :

non-photochemical quenching

qP :

photochemical quenching

PS2:

photosystem 2

RGR:

relative growth rate

WT:

wild type

Φc :

apparent quantum yield

ΦPS2 :

effective quantum yield of PS2

References

  • Atal, N., Saradhi, P.P., Mohanty, P.: Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yield.-Plant Cell Physiol. 32: 943–951, 1991.

    CAS  Google Scholar 

  • Burzyński, M., Kłobus, G.: Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress.-Photosynthetica 42: 505–510, 2004.

    Article  CAS  Google Scholar 

  • Burzyński, M., Żurek, A.: Effects of copper and cadmium on photosynthesis in cucumber cotyledons.-Photosynthetica 45: 239–244, 2007.

    Article  CAS  Google Scholar 

  • Chen, J., Zhu, C., Lin, D., Sun, Z.X.: The effects of Cd on lipid peroxidation, hydrogen peroxide content and antioxidant enzyme activities in Cd-sensitive mutant rice seedlings.-Can. J. Plant Sci. 87: 49–57, 2007.

    CAS  Google Scholar 

  • Clijsters, H., Van Assche, F.: Inhibition of photosynthesis by heavy metals.-Photosynth. Res. 7: 31–40, 1985.

    Article  CAS  Google Scholar 

  • Dalla Vecchia, F., La Rocca, N., Moro, I., de Faveri, S., Andreoli, C., Rascio, N.: Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium.-Plant Sci. 168: 329–338, 2005.

    Article  CAS  Google Scholar 

  • Das, P., Samantaray, S., Rout, G.R.: Studies on cadmium toxicity in plants: a review.-Environ. Pollut. 98: 29–36, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, W.H.O.: Bioavailability of heavy metals and decontamination of soils by plants.-Appl. Geochem. 11: 163–167, 1996.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87–92, 1989.

    CAS  Google Scholar 

  • He, J.Y., Zhu, C., Ren, Y.F., Jiang, D.A., Sun, Z.X.: Root morphology and cadmium uptake kinetics of the cadmium-sensitive mutant rice.-Biol. Plant. 51: 791–794, 2007.

    Article  CAS  Google Scholar 

  • Howden, R., Cobbett, C.S.: Cadmium sensitive mutant of Arabidopsis thaliana.-Plant Physiol. 99: 100–107, 1992.

    Article  Google Scholar 

  • Howden, R., Goldsbrough, P.B., Anderson, C.R., Cobbett, C.S.: Cadmium sensitive, cad1 mutant of Arabidopsis thaliana are phytochelatin deficient.-Plant Physiol. 107: 1059–1066, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kao, W.-Y., Tsai, T.-T., Shin, C.-N.: Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments.-Photosynthetica 41: 415–419, 2003.

    Article  CAS  Google Scholar 

  • Krupa, Z., Baszyński, T.: Some aspects of heavy metals toxicity towards photosynthetic apparatus — direct and indirect effects on light and dark reactions.-Acta Physiol. Plant. 17: 177–190, 1995.

    CAS  Google Scholar 

  • Kűpper, H., Kűpper, F., Spiller, M.: Environmental relevance of heavy metal-substituted chlorophyll using the example of water plants.-J. exp. Bot. 47: 259–266, 1996.

    Article  Google Scholar 

  • Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.-Biochem. Soc. Trans. 603: 591–592, 1983.

    Google Scholar 

  • Linger, P., Ostwald, A., Haensler, J.: Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis.-Biol. Plant. 49: 567–576, 2005.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide.-J. exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Moya, J.L., Ros, R., Picazo, I.: Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants.-Photosynth. Res. 36: 75–80, 1993.

    Article  CAS  Google Scholar 

  • Otero, S., Núñez-Olivera, E., Martínez-Abaigar, J., Tomás, R., Arróniz-Crespo, M., Beaucourt, N.: Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia.-Photochem. photobiol. Sci. 5: 760–769, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G.: Physiological changes and defence mechanisms induced by cadmium stress in maize.-J. Plant Nutr. Soil Sci. 169: 239–246, 2006.

    Article  CAS  Google Scholar 

  • Prasad, M.N.V., Strzalka, K.: Impact of heavy metals on photosynthesis.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 117–138. Springer, Heidelberg 1999.

    Google Scholar 

  • Prasad, S.M., Zeeshan, M.: UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum.-Biol. Plant. 49: 229–236, 2005.

    Article  CAS  Google Scholar 

  • Sanita di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants.-Environ. exp. Bot. 41: 105–130, 1999.

    Article  Google Scholar 

  • Siedlecka, A., Krupa, Z.: Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris.-Plant Physiol. Biochem. 34: 833–841, 1996.

    CAS  Google Scholar 

  • Vajpayee, R.D., Rai, U.N., Ali, M.B., Tripati, R.D., Singh, S.N.: Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in hytoremediation of tannery effluents.-Bull. Environ. Contam. Toxicol. 67: 246–256, 2001.

    PubMed  CAS  Google Scholar 

  • Vassilev, A., Manolov, P.: Chlorophyll fluorescence of barley (H. vulgare L.) seedlings grown in excess of Cd.-Bulg. J. Plant Physiol. 25: 67–76, 1999.

    CAS  Google Scholar 

  • Wickens, L.K., Cheeseman, J.M.: Application of growth analysis to physiological studies involving environmental discontinuities.-Physiol. Plant. 73: 271–277, 1988.

    Article  Google Scholar 

  • Wu, F.B., Zhang, G.P., Yu, J.S.: Genotypic differences in effect of Cd on photosynthesis and chlorophyll fluorescence of barley (Hordeum vulgare L.).-Bull. Environ. Contam. Toxicol. 71: 1272–1281, 2003.

    PubMed  CAS  Google Scholar 

  • Zhu, Z.G., Fu, Y.P., Xiao, H., Hu, G.C., Yu, Y.H., Si, H.M., Zhang, J.L., Sun, Z.X.: [Construction of rice mutant pool inserted the maize transposable element Ac/Ds and genetic analysis for several mutants.]-Chin. J. Biotechnol. 17: 288–292, 2001. [In Chin.]

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -Y. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J.Y., Ren, Y.F., Zhu, C. et al. Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46, 466–470 (2008). https://doi.org/10.1007/s11099-008-0080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-008-0080-2

Additonal key words

Navigation